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Fig. 1. A near-incompressible bunny with Poisson’s ratio 𝜈 = 0.49, consisting of 47k vertices and 223k elements, is squeezed by a gradually shrinking torus.
Our solver, MiNNIE, generates vivid fat folds near the torso and ankles as shown in the close-up views (where the torus is intentionally rendered in half). In
contrast, linear FEM solved with the GPU multigrid solver [Xian et al. 2019] fails to produce these details due to the volumetric locking artifact. The volume
loss of MiNNIE and linear FEM are 0.8% and 1.2% respectively. In terms of efficiency, MiNNIE takes an average of 16.8 ms per frame. It is only 20% more
expensive than [Xian et al. 2019] which takes on average 14.1 ms to produce a frame. Model courtesy of ©Blender.

We propose MiNNIE, a simple yet comprehensive framework for real-time

simulation of nonlinear near-incompressible elastics. To avoid the common

volumetric locking issues at high Poisson’s ratios of linear finite element

methods (FEM), we build MiNNIE upon a mixed FEM framework and further

incorporate a pressure stabilization term to ensure excellent convergence

of multigrid solvers. Our pressure stabilization strategy injects bounded

influence on nodal displacement which can be eliminated using a quasi-

Newton method. MiNNIE has a specially tailored GPU multigrid solver

including a modified skinning-space interpolation scheme, a novel vertex

Vanka smoother, and an efficient dense solver using Schur complement.

MiNNIE supports various elastic material models and simulates them in

real-time, supporting a full range of Poisson’s ratios up to 0.5 while handling

large deformations, element inversions, and self-collisions at the same time.
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time simulation

∗
corresponding authors

Authors’ addresses: Liangwang Ruan, School of Computer Science, Peking Univer-

sity, Beijing, China, ruanliangwang@pku.edu.cn; Bin Wang, State Key Laboratory

of General Artificial Intelligence, BIGAI, Beijing, China, binwangbuaa@gmail.com;

Tiantian Liu, Taichi Graphics, Beijing, China, ltt1598@gmail.com; Baoquan Chen, State

Key Laboratory of General Artificial Intelligence, Peking University, Beijing, China,

baoquan@pku.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2024/12-ART258 $15.00

https://doi.org/10.1145/3687758

ACM Reference Format:
Liangwang Ruan, Bin Wang, Tiantian Liu, and Baoquan Chen. 2024.MiN-
NIE: a Mixed Multigrid Method for Real-time Simulation of Nonlinear
Near-Incompressible Elastics. ACM Trans. Graph. 43, 6, Article 258 (Decem-

ber 2024), 15 pages. https://doi.org/10.1145/3687758

1 INTRODUCTION
Incompressibility is a common property for many deformable mate-

rials such as human tissue, fat, rubber, and hydrogel. This volume-

preserving property is essential for various applications, including

entertainment, virtual surgery, fabrication, robotics, and safety anal-

ysis. As the Poisson’s ratio 𝜈 of those near-incompressible materials

approaches to 0.5, the bulk modulus
𝐸

3(1−2𝜈 ) that measures the re-

sistance of volume change goes towards infinity. This results in

extremely ill-conditioned problems for classic finite element meth-

ods, causing notable locking and instability artifacts [Irving et al.

2007]. One example to show this locking artifact can be seen in

Fig. 2.

One solution to this high-stiffness problem is using the mixed

Galerkin finite element (mixed FEM) formulation. The mixed FEM

treats the volume preservation constraints as Lagrange multipli-

ers upon auxiliary pressure terms 𝑝 instead of vertex positions 𝒙 ,
turning this constrained deformation problem a saddle-point prob-

lem. In theory, the mixed FEM imposes stringent requirements on

choosing solution spaces for 𝒙 and 𝑝 . Specifically, high-order ele-

ments that adhere to the Ladyzhenskaya–Babuška–Brezzi (LBB) or

inf-sup condition ensure convergence and unique solutions [Boffi

et al. 2008]. But they are complicated to implement and slow to

solve. Low-order elements, on the other hand, are much more ef-

ficient to solve. However, the P1/P0 elements (featuring a linear
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Fig. 2. A dancing bunny with 𝜈 = 0.49 whose back neck is constrained by a periodically-moving controller. The 0th, 10th, 18th, 27th, 38th, and 44th frames are
shown here. MiNNIE (top) generates vivid dynamics while Linear FEM with [Xian et al. 2019] (bottom) produces much stiffer movements due to locking.
Model courtesy of ©Blender.

displacement field and element-wise constant pressure field) are

notorious for their volumetric locking issues [Frâncu et al. 2021],

while increasing the order of the pressure field to the same as dis-

placements (P1/P1 elements) introduces oscillatory pressure modes,

often referred to as the checkerboard artifact [Sani et al. 1981]. The

locking-proof tetrahedra [Frâncu et al. 2021] is the state-of-the-art

near-incompressible elastic material simulator based on the P1/P1

elements. However, its performance, solved by either direct solvers

or its proposed nonlinear Uzawa solver, is still insufficient to reach

the real-time requirement. We provide the full derivation of mixed

FEM with P1/P1 elements and explain the problem of applying

well-studied solvers to it in Sec. 3.

Naive adoption of efficient multigrid solvers [Liu et al. 2018; Shao

et al. 2022; Xian et al. 2019] does not help to improve the performance

of the P1/P1-element-based solvers.We observe that this is caused by

the oscillatory high-frequency spurious pressure mode, also known

as the checkerboard artifact. This oscillatory pressure mode pro-

duces high-frequency errors in the near-kernel space. Meanwhile,

multigrid algorithms are designed to eliminate high-frequency far-

kernel errors by smoothers, and handle low-frequency near-kernel

errors by passing them to coarser levels [Tamstorf et al. 2015]. This

high-frequency near-kernel error cannot be quickly mitigated using

smoothers, nor corrected by coarser grids [Zhu et al. 2010]. That is

why multigrid solvers typically behave with poor convergence or

even numerical instability in solving the P1/P1 elements.

We propose MiNNIE: a Mixed Multigrid Method for Real-time

Simulation of Nonlinear Near-Incompressible Elastics. MiNNIE is

designed upon a key observation that simple pressure stabiliza-

tion [Dohrmann and Bochev 2004] which directly penalizes the

pressure difference for each node and its neighbors, can greatly mit-

igate the checkerboard artifact. This pressure stabilization strategy

thus enables the possibility of further accelerations using multi-

grid schemes. We study the influence of pressure stabilization on

nodal displacement under different strengths and element scales,

and show this influence has a theoretical upper bound. We also

provide a quasi-Newton option if optimal positional accuracy is

needed. We discuss the pressure stabilization strategy in detail in

Sec. 4. Given the stabilized pressure, we further design a specially

tailored multigrid framework that includes a modified interpola-

tion scheme, a novel smoother for indefinite systems, and a Schur-

complement dense solver. Our multigrid solver uses the skinning

space coordinates [Xian et al. 2019] which allows us to reduce the

coarse resolution more aggressively for both position and pressure

DoFs. To support the indefinite nature of the mixed FEM system in

multi-resolution grids, we propose a novel vertex Vanka smoother

and show its superior performance among all competing smoothers

on GPU. We also take advantage of the constant compliant matrix

and stabilization matrix and design a fast dense solver using pre-

factorized matrix components. All details of our multigrid method

can be found in Sec. 5. At last, to apply MiNNIE to various materials,

we derive the split form of common constitutive models such as

the stable Neo-Hookean, Mooney-Rivlin, and Corotation model in

Sec. 6 and discuss the method to evaluate the explicit eigensystem

of positional Hessian in the mixed form for general materials.

As a result, MiNNIE demonstrates remarkable robustness accom-

modating a wide range of Poisson’s ratio up to 0.5. MiNNIE does

not suffer from locking artifacts and delivers vivid visual effects

as shown in Fig. 1 and Fig. 2. MiNNIE supports large-scale mod-

els with stiff materials efficiently. For instance, it simulates the

model with 105k vertices and 371k elements in 26 ms on average per

frame, supporting self-collisions and degenerated or even inverted

elements, preserving volumes after recovering from inversions as

shown in Fig. 14. We release the official implementation of MiNNIE

at https://github.com/LwRuan/MiNNIE.
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Fig. 3. Bulging. A cylinder with 10k vertices and 57k elements is bent with internal skeletons with positional constraints. We show different bulging effects
and total volume loss for different Poisson’s ratios 𝜈 .

2 RELATED WORK
Near-incompressible elastic simulation. Incompressibility is a well-

known concept in fluid simulations, often addressed through pres-

sure projection to enforce divergence-free velocity constraints [Brid-

son 2015]. In the context of elastics, Irving et al. [2007] applied simi-

lar principles, incorporating a post-projection step to correct the ve-

locities of elastic bodies. Diziol et al. [2011] enforce incompressibility

by imposing a global volume constraint solely on the surface mesh.

In contrast, Sheen et al. [2021] introduced region-based volume con-

straints for simulating human tissues. However, these methods can

only simulate the incompressible limit (𝜈 = 0.5), fail to capture the

true Poisson’s ratio’s behaviors in physical materials. Alternatively,

various methods have been developed to simulate elastic materials

with volume penalties, including co-rotated [McAdams et al. 2011],

Neo-Hookean [Liu et al. 2017], stable Neo-Hookean [Smith et al.

2018], StVK with volume terms [Kikuuwe et al. 2009; Teschner et al.

2004;Wang et al. 2019]. However, directly simulating these materials

with linear tetrahedral elements often leads to noticeable locking

artifacts [Frâncu et al. 2021; Irving et al. 2007]. Using higher-order

elements like quadratic elements [Bargteil and Cohen 2014] and

the discontinuous Galerkin method [Kaufmann et al. 2009], avoids

the locking issue, at a cost of low run-time performance. Another

approach to mitigate locking issues is the mixed FEM method [Boffi

et al. 2008], which we adopt in this paper. Additionally, incompress-

ibility can be incorporated into extended position-based dynamics

(XPBD) [Macklin and Muller 2021], where both the distortion and

volumetric energy are formulated into constraints. However, strictly

preserving volume in XPBD often requires numerous iterations. Ad-

ditionally, constraint-level parallelism using graph coloring limits its

ability to handle tetrahedral meshes in complex scenarios, possibly

requiring hundreds of colors to colorize all the elements.

Mixed FEM. The mixed FEM has been widely adopted in engineer-

ing for simulating various phenomena since the last century [Brezzi

and Fortin 1991]. In the field of computer graphics, Roth et al. [1998]

were among the first to utilize mixed FEM to simulate linear elastic-

ity for facial animations. Many previous works in computer graphics

have focused on applying mixed FEM to regular grids. For instance,

Zhu et al. [2010] introduced the mixed formulation on regular grids

to simulate linear or co-rotated linear elasticity. Patterson et al.

[2012] extended this approach to simulate nonlinear elastic bodies

using a lattice deformer, achieving higher-order accuracy. Stom-

akhin et al. [2014] developed a mixed formulation for the mate-

rial point method to simulate incompressible objects. Setaluri et al.

[2015] also used regular grids in mixed form to warp 2D images.

While regular grids offer computational and storage efficiency, they

are not conformal to underlying meshes. This raises challenges

such as boundary handling, embedding artifacts, and limitations

in handling complex geometries. For tetrahedral meshes, the work

by Irving et al. [2007] can be considered as a variation of P1/P1

mixed FEM, but solved with operator splitting, as commonly done

in fluid simulation [Bridson 2015]. Misztal et al. [2012] simulated

multi-phase fluid using a P1/P0 mixed formulation. Frâncu et al.

[2021] applied P1/P1 mixed FEM to simulate near-incompressible

elastic bodies, but their solver was not sufficiently fast for real-time

applications and left the checkerboard artifacts unsolved. More re-

cently, another line of work by Trusty et al. [2023, 2022] explored

the application of mixed FEM to address the convergence problems

of large rotations, rather than near-incompressibility.

Multigrid. Multigrid methods are famous for their rapid conver-

gence, particularly when dealing with large meshes and detail-

rich deformations [Georgii and Westermann 2006]. These tech-

niques have found applications in a variety of graphic tasks in-

volving diverse geometric structures, such as regular grids [Liu et al.

2018; McAdams et al. 2011; Shao et al. 2022], triangle meshes [Liu

et al. 2021; Tamstorf et al. 2015; Wang et al. 2018], tetrahedral

meshes [Sacht et al. 2015; Xian et al. 2019]. However, most pre-

vious research primarily focuses on solving symmetric positive

definite (SPD) problems. In the case of indefinite systems, particu-

larly those arising from mixed FEM like the one employed in our

work, there exists a certain foundation of research in the industry.

Benzi et al. [2005] conducted an extensive survey of various multi-

grid approaches, as did by Oosterlee and Gaspar [2008]. However,

in the realm of computer graphics, related research is still relatively

rudimentary. Zhu et al. [2010] developed a geometric multigrid for

regular grids to simulate linear or co-rotated elastic materials, and

Setaluri et al. [2015] built a geometric multigrid on 2D regular grids

for image warping. In contrast, our approach involves a Galerkin

multigrid method capable of effectively handling 3D unstructured

meshes and nonlinear materials, which is a substantial complement

to existing methods.

3 MOTIVATION & BACKGROUND
In this section, we provide the motivation and a brief overview of

the mixed finite element method (mixed FEM) for simulating nearly

incompressible solids with linear tetrahedral elements. We use italic

letters like 𝒙 , 𝑝 for continuous field, and roman letters like x ∈
R3𝑛

, p ∈ R𝑛 for discrete values, where 𝑛 is the number of vertices.

ACM Trans. Graph., Vol. 43, No. 6, Article 258. Publication date: December 2024.
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(a) A stable Neo-Hookean (SNH) elastic cylinder with 𝜈 = 0.49 is stretched
by a suspended weight.

(b) An elastic tube with 𝜈 = 0.49 is compressed to 70% of its height.

Fig. 4. We compare the results of 1. second-order FEM using FEBio [Maas
et al. 2012], 2. MiNNIE, 3. Linear FEM using [Xian et al. 2019] and report
their volume change. In both cases (a) and (b), linear FEM tends to be stiffer
due to volumetric locking, while MiNNIE produces more similar results with
second-order FEM and preserves volume better. We also show the result
of the corotation model simulated by MiNNIE in (b), it uses a linearized
volume-preserving constraint and hence does not preserve volume well.

For comprehensive derivations, please refer to the supplemental

material.

3.1 Problem Formulation
Following [Frâncu et al. 2021; Patterson et al. 2012], we assume

common constitutive models adhere to the split form:

Ψ(𝒙) = Ψ𝑑 (𝒙) + Ψ𝑣 (𝒙), Ψ𝑣 (𝒙) =
𝜅

2

Φ(F)2 . (1)

Here, Ψ𝑣 (𝒙) denotes a quadratic penalty enforcing the volume

preservation constraint Φ(F) = 0, where F is the deformation

gradient and 𝜅 is the penalty stiffness. Ψ𝑑 (𝒙) constitutes the re-

maining part in Ψ(𝒙) apart from Ψ𝑣 (𝒙), primarily penalizing distor-

tion. Many existing constitutive models align well with this split

form. For instance, the Neo-Hookean [Bonet and Wood 2008] model

has Φ(F) = log 𝐽 = log(det F) and 𝜅 = 𝐸𝜈
(1+𝜈 ) (1−2𝜈 ) where 𝐸 is

the Young’s modulus and 𝜈 is the Poisson’s ratio; the Mooney-

Rivlin [Barbič et al. 2012] model has Φ(F) = 𝐽 − 1 = det F − 1

and 𝜅 = 𝐸
3(1−2𝜈 ) ; and the corotation [McAdams et al. 2011] model

has Φ(F) = tr(S − I) and 𝜅 = 𝐸𝜈
(1+𝜈 ) (1−2𝜈 ) , where S is the symmetric

part of F’s polar decomposition, etc.. Note that the Φ term in the

corotation model is a linearized volume preservation constraint near

rest configurations [Patterson et al. 2012], it does not preserve exact

volume under large deformation. In all examples above, 𝜅 goes to in-

finity as Poisson’s ratio approaches 0.5 to enforce either the exact or

the approximated volume preservation constraint Φ(F) = 0. Further

elaboration on constitutive models will be provided in Section 6.

A common way to simulate elastodynamics is to incorporate Eq.1

into a time integration problem which can be formulated using

incremental potential optimization [Kane et al. 2000]:

𝒙𝑛+1 = arg min

𝒙
I(𝒙),

I(𝒙) =
∫
Ω
[𝑇 (𝒙) + Ψ𝑑 (𝒙) + Ψ𝑣 (𝒙)]𝑑Ω.

(2)

Here, Ω is the simulation domain in rest configuration, 𝑇 (𝒙) =
𝜌

2ℎ2
∥𝒙 − 𝒙∗∥2 is the inertia term, where 𝒙∗ = 𝒙𝑛 + 𝒗𝑛ℎ + 1

𝜌 𝒇extℎ
2
.

𝒇ext, 𝜌 and ℎ correspond to the external force density, the mass

density and the time step size, respectively. Eq. 2 is usually solved

using the finite element method which discretizes Ω with linear

elements (P1 elements). However, the discretized system can be

over-constrained when simulating near-incompressible materials

with enormously stiff volume constraints. In a tetrahedral mesh

with 𝑁𝑣 vertices and 𝑁𝑒 elements, the number of volume penalties

(𝑁𝑒 ) is often comparable to the kinematic degrees of freedom (3𝑁𝑣 ),

as noted in Tab. 2. Consequently, these volumetric penalties can

eliminate most DoFs, resulting in an elastic body that is much stiffer

than it should be. It is usually referred to as the volumetric locking
phenomena. We demonstrate the locking phenomena under 𝜈 = 0.49

in Fig. 4, and more severe artifacts at larger Poisson’s ratios in Fig. 10

and Fig. 8. The locking problem always occurs in linear FEM, and

cannot be resolved by increasing mesh resolution (i.e. h-refinement).

Higher-order FEM (i.e. p-refinement) mitigates this problem at the

cost of employing much more complicated systems and less efficient

solvers.

To address this issue, the mixed FEM introduces an auxiliary

pressure field 𝑝 , transforming Eq. 2 into a saddle point problem:

(𝒙𝑛+1, 𝑝𝑛+1) = arg min

𝒙
max

𝑝
L(𝒙, 𝑝),

L(𝒙, 𝑝) =
∫
Ω
[𝑇 (𝒙) + Ψ𝑑 (𝒙) + 𝑝Φ −

1

2𝜅
𝑝2]𝑑Ω.

(3)

L(𝒙, 𝑝) is called the perturbed Lagrangian [Zienkiewicz et al. 2013].

When 𝜅 → ∞, 1

𝜅 = 0 and 𝑝 functions as a Lagrangian multiplier

to enforce complete volume constraint Φ = 0; When 𝜅 < ∞, we
have max𝑝 (𝑝Φ − 1

2𝜅 𝑝
2) = 𝜅

2
Φ2 = Ψ𝑣 (𝒙), where the maximum is

reached at 𝑝 = 𝜅Φ, thus max𝑝 L(𝒙, 𝑝) = I(𝒙), and the solution of

Eq. 3 is the same as Eq. 2. The introduced pressure field isolates

the discretization of the volume constraint Φ from the discretiza-

tion of displacement 𝒙 , thus limiting the number of constraints to

avoid locking. The simplest non-locking discretization uses linear

elements (P1/P1 elements) for both primal (𝒙) and dual (𝑝) variables.
The discretized Eq. 3 can be formulated as:

𝐿(x, p) = 1

2ℎ2
∥x − x∗∥2M +𝑈𝑑 (x) + p

Tϕ − 1

2

p
TCp. (4)

Here x ∈ R3𝑛
, p ∈ R𝑛 , 𝑈𝑑 ∈ R, ϕ ∈ R𝑛 , C ∈ R𝑛×𝑛 are the discrete

correspondences of 𝒙 , 𝑝 , Ψ𝑑 , Φ, 1/𝜅 from Eq. 3, with their definitions

listed in Tab. 1. Particularly for discrete volume constraint ϕ we
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have:

ϕ𝑖 =
∑︁
𝑒

∫
Ω𝑒

Φ(F𝑒 )𝑁𝑖 (𝑿 )𝑑Ω =
1

4

∑︁
𝑒∈N𝑖

Φ(F𝑒 )𝑉𝑒 , (5)

where 𝑁𝑖 (𝑿 ) is the linear shape function of vertex 𝑖 , N𝑖 is the

neighboring elements of vertex 𝑖 , 𝑉𝑒 is the rest volume of element

𝑒 . With the P1/P1 discretization, the number of discrete volume

constraints is reduced to 𝑑𝑖𝑚(ϕ) = 𝑛, which is much smaller than

the system DoF 𝑑𝑖𝑚(x) = 3𝑛, thus avoiding the locking artifacts.

3.2 Numerical Solver
We employ the Newton-Raphson method to solve the Karush-Kuhn-

Tucker (KKT) system derived from Eq. 4. This involves solving the

following linearized symmetric indefinite system at each iteration:

Au = b, A =

(
K GT

G −C

)
, u =

(
𝛿x
𝛿p

)
, b =

(
f
g

)
, (6)

with each quantity defined in Tab. 1. Though Eq. 6 involves a larger

matrix of size 4𝑛×4𝑛 compared to the 3𝑛×3𝑛 matrix in classic linear

FEM, the sub-blocks C, G, and K maintain the beneficial sparsity

property of linear FEM. C is a constant diagonal matrix encoding

the compliance. G is the Jacobian of ϕ, G𝑖 𝑗 = 𝜕ϕ𝑖/𝜕x𝑗 is nonzero
only when vertex 𝑖 and 𝑗 belong to the same tetrahedron. K is the

positional Hessian matrix following the same sparsity pattern with

linear FEM. This mixed FEM formulation has been widely used

in mechanical engineering, but designing an efficient numerical

solver for this problem remains challenging. The system in Eq. 6

is indefinite, preventing the application of most high-performance

SPD solvers, such as DOT [Li et al. 2019], preconditioned Conju-

gate Gradient [Wu et al. 2022], and multigrid [Xian et al. 2019].

A straightforward solution is to turn this problem into a positive

definite problem using Schur complement. We provide two options

here:

option 1: (K + GTC−1G)𝛿x = f + GTC−1
g,

option 2: (C + GK−1GT)𝛿p = −g + GK−1f,
(7)

However, neither of these options is efficient enough. For option

1, G shares the same sparsity pattern as K, thus making GTC−1G
much denser than K: each vertex has nonzero coefficients to all its

second-ring neighboring vertices. Moreover, C−1
is proportional to

the stiffness 𝜅, which goes to infinity when 𝜈 → 0.5. For option 2,

we need to deal with the non-trivial K−1
sandwiched in the matrix,

which requires nested sparse solvers. For these reasons, we decide

to develop a monolithic GPU multigrid solver specially designed for

mixed FEM utilizing P1/P1 elements (Eq. 6).

4 PRESSURE STABILIZATION
Before diving into our multigrid solver, we would first like to em-

phasize an oscillatory pressure problem inherited from the P1/P1

elements, as it undermines the stability of multigrid solvers. For sim-

plicity, let us assume a case where boundary conditions are ignored

and the Poisson’s ratio is exactly 0.5. In this case, 𝜅 goes infinity

and C = 0, the only pressure term in the discrete saddle point in

Eq. 4 is the p
Tϕ term. We expand this term using Eq. 5:

p
Tϕ =

∑︁
𝑖

p𝑖ϕ𝑖 =
∑︁
𝑖

p𝑖
1

4

∑︁
𝑒∈N𝑖

Φ(F𝑒 )𝑉𝑒 . (8)

Table 1. The definition of notations in P1/P1 mixed FEM.

Definition Shape Meaning

𝑉𝑖 = 1/4∑𝑒∈N𝑖
𝑉𝑒 scalar rest volume of vertex 𝑖

M = Diag(𝜌𝑉𝑖 I3) 3𝑛 × 3𝑛 mass matrix

𝑈𝑑 (x) =
∑
𝑒 Ψ𝑑 (F𝑒 )𝑉𝑒 scalar distortion energy

ϕ = [ϕ1, · · · , ϕ𝑛]T 𝑛 × 1 vertex volume constraint

C = Diag(𝑉𝑖/𝜅) 𝑛 × 𝑛 inverted volumetric

stiffness matrix

G = 𝜕ϕ/𝜕x 𝑛 × 3𝑛 Jacobian of constraint

f𝑑 = −𝜕𝑈𝑑/𝜕x 3𝑛 × 1 distortion force

f = −𝜕𝐿/𝜕x
= M/ℎ2 (x∗ − x) + f𝑑 − GT

p

3𝑛 × 1

f = 0 is the

KKT condition for x
g = −𝜕𝐿/𝜕p

= Cp − ϕ 𝑛 × 1

g = 0 is the

KKT condition for p

K = 𝜕2𝐿/𝜕x2
3𝑛 × 3𝑛

projected Hessian

of position

This summation first iterates over each vertex 𝑖 , then over each

neighboring element 𝑒 of vertex 𝑖 (𝑒 ∈ N𝑖 ), which can be reordered

by first iterating over each element 𝑒 , then over each vertex 𝑖 in

element 𝑒 (𝑖 ∈ E𝑒 ):

p
Tϕ =

∑︁
𝑒

Φ(F𝑒 )𝑉𝑒
1

4

∑︁
𝑖∈E𝑒

p𝑖 =
∑︁
𝑒

Φ(F𝑒 )𝑉𝑒 p̄𝑒 . (9)

where p̄𝑒 := 1

4

∑
𝑖∈E𝑒 p𝑖 is the average pressure in element 𝑒 . From

Eq. 9, we can see that only element-wise averaged pressure p̄𝑒 , not

the individual p𝑖 , contributes to p
Tϕ. As long as p̄𝑒 = 0, even if

the pressure at each vertex p𝑖 exhibits large alternating positive

and negative values (i.e. oscillated pressures or the "checkerboard"

pattern), the final equilibrium state of positions remains unaffected.

In other words, this oscillated pressure mode is a zero mode of the

saddle point problem in this case. In less contrived cases where

𝜈 < 0.5 and proper boundary conditions are applied, this oscillated

pressure mode corresponds to small eigenvalues of the system. This

means we can inject a large amount of oscillated pressure values

into the system with negligible impact on the positional DoFs, as

shown in the upper-left of Fig. 5. This problem may be safely disre-

garded in applications where the accuracy of only positional DoFs

is primarily concerned, if solved using direct solvers [Frâncu et al.

2021]. However, this claim does not hold for multigrid solvers.

In a typical multigrid setup, smoothers (e.g. stationary iterative

solves like Jacobi or Gauss-Seidel) can efficiently smooth out local

high-frequency errors, corresponding to large eigenvalues of the

system. Conversely, global low-frequency errors, corresponding

to error modes with small eigenvalues, are transferred to coarser

grids where they appear as high-frequency errors for coarse level

smoothers. However, in our case, the oscillated pressure mode has

small eigenvalues so it cannot be efficiently smoothed out by sta-

tionary smoothers. Moreover, the oscillated pressure mode is a

high-frequency mode and thus can not be effectively transferred to

coarser levels as well. As a result, multigrid solvers can neither elim-

inate the oscillatory pressure errors using their smoothers, nor pass

those errors into coarser grids. Directly applying multigrid solvers

to the P1/P1 mixed FEM systems often results in divergence.
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The root cause of this problem lies in using the same order of

discretization for both the position and pressure DoF. A similar issue

arises in fluid simulations when the same discretization is applied to

both velocity and pressure variables [Bridson 2015]. One effective

solution is to use a staggered grid [Zhu et al. 2010], but this approach

is limited to regular grids. For unstructured meshes, more complex

discretization is often required to eliminate this artifact, for instance,

the Taylor-Hood (P2/P1) element, the MINI element, the Crouzeix-

Raviart element (also used in [English and Bridson 2008]), etc. [Boffi

et al. 2008]. In our case, for computational efficiency, we adopt

another well-established solution, known as the local projection

stabilization method [Dohrmann and Bochev 2004]. This technique

aims to suppress the oscillated pressure modes by projecting nodal

pressure DoF to a lower order of discretization using an extra penalty

term in the saddle point formulation of Eq. 3:

𝐸𝑝 = − 𝛼

2𝜇

∑︁
𝑒

∫
Ω𝑒

(𝑁 (X)𝑝 − 𝑝𝑒 )2𝑑Ω. (10)

Here 𝑁 (X) = [𝑁0 (X), · · · , 𝑁𝑛−1 (X)] are the linear shape functions
of vertices, 𝑝𝑒 is the average pressure in element 𝑒 , 𝜇 = 𝐸

2(1+𝜈 ) is
the shear modulus, and 𝛼 is a tunable strength parameter, which

is set to 1 in [Dohrmann and Bochev 2004]. The negative sign is

necessary because the pressure 𝑝 maximizes the Lagrangian L. This
term tends to minimize the difference between nodal pressures 𝑝𝑖
and element mean pressures 𝑝𝑒 , effectively targeting the unwanted

oscillated pressure mode as previously analyzed.

Inevitably, since x and p are strongly coupled, this extra pres-

sure penalty also affects the equilibrium state of positions, and the

greater the penalty, the larger the position error. As shown in Fig. 5,

for 𝛼 = 1, the oscillated pressure distribution is smoothed out, and

the position deviation is not noticeable; however for 𝛼 = 30, the

pressure field is excessively smoothed, leading to undesired position

artifacts. Fortunately, regardless of the choice of pressure stabiliza-

tion strength 𝛼 , the solutions always converge to the ground truth

as the mesh resolution increases. This is established in Theorem 3.14

in Elman et al. [2014], which demonstrates that the error between

the stabilized discrete solution and the true solution is bounded

by a constant multiplied by the maximum edge length of the tetra-

hedrons. We also validate this theorem experimentally, as shown

at the bottom of Fig. 5. Both the theoretical and experimental re-

sults confirms the correctness of our stabilization method. In cases

where positional accuracy is of greater concern, a quasi-Newton

solution can be employed to enforce the undisturbed final solution.

Specifically, we apply the stabilization term from Eq. 10 only to the

left-hand side of Eq. 6, leaving the right-hand side unchanged, as if

no pressure stabilization were applied. This approach ensures con-

vergence to equilibrium without any pressure stabilization, which

results in smooth displacement and oscillatory pressure, albeit with

slightly slower convergence speed. In practice, we apply full pres-

sure stabilization in Eq. 10 for real-time dynamic simulations to

achieve optimal dynamics, and the quasi-Newton strategy for quasi-

static cases for optimal accuracy. We find a moderate amount of

penalty(𝛼 = 1) works well for all our experiments, except for the

extreme inversion test in Fig. 12 where we set 𝛼 = 20.

Fig. 5. Top: A cube with 14k vertices and 70k elements deforms under gravity
with the bottom vertices fixed. The cubes are colored according to the pres-
sure distribution at their equilibrium states solved by MINRES under three
configurations: without pressure stabilization (𝛼 = 0), with 𝛼 = 1, and with
𝛼 = 30 as defined in Eq. 10. A notable pressure checkerboard pattern appears
without pressure stabilization. Pressure stabilization effectively mitigates
this issue, although excessive stabilization can lead to small undesired visual
artifacts. Bottom: Y-axis is the mean vertex position deviation between the
equilibrium states of the same mesh with or without pressure stabilization,
X-axis is the max scale of tetrahedrons specified in the meshing tools from
Houdini [SideFX 2023]. The deviation linearly converges to near zero as the
tetrahedron scale decreases.

For each individual element, the penalty described in Eq. 10 in-

troduces a constant Laplacian penalty to the pressures of its four

vertices, represented by the following 4 × 4 constant matrix:

S𝑒 =
𝛼𝑉𝑒

80𝜇

©«
3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3

ª®®®¬ . (11)

Assembling all the S𝑒 yields the penalty matrix S, which is then

incorporated into C in Eq. 4 and Eq. 6. This form offers two signifi-

cant advantages: the sparsity pattern aligns with K and G, and it’s a
constant matrix added solely to the pressure part. These features

are leveraged in the design of our multigrid solver, as detailed in

the following section.

5 MULTIGRID

ALGORITHM 1 two-level v-cycle Galerkin multigrid

Require: A, b, u1 ⊲ u1 is the initial guess
1: u1 ← PreSmooth(A, b, u1)
2: r1 ← b − Au1, r2 ← PTr1 ⊲ restriction
3: Solve (PTAP)e2 = r2 ⊲ can be nested into a deeper v-cycle
4: e1 ← Pe2, u1 ← u1 + e1 ⊲ prolongation
5: u1 ← PostSmooth(A, b, u1)

A classic two-level v-cycle Galerkin multigrid to solve Au = b
is shown in Alg. 1, which consists of three main components: the
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smoother (step 1, 5), the interpolation operator P (step 2, 4), and

the direct solver at coarsest level (step 3). This two-level structure

can be nested into a deeper v-cycle by consecutively coarsening

PTAP. For classic SPD linear system, Xian et al. [2019] propose a

skinning-space Galerkin multigrid framework that is easy to con-

struct, efficient, and scalable. We reconfigure the essential compo-

nents of their method, to accommodate our mixed FEM formulation,

with minimal efficiency lost while avoiding locking artifacts. The

multilevel multigrid structures and key configuration parameters

for all our examples are detailed in Tab. 2 under the columns "grid

set-up" and "solver set-up".

5.1 Interpolation
We first explain the position interpolation scheme proposed by Xian

et al. [2019]. Instead of building a coarse grid, Xian et al. [2019] pro-

pose using Linear Blend Skinning (LBS) to interpolate displacement

DoF at the finest level. Specifically, a number of random vertices

are selected as handles, with each handle 𝑏 having a local affine

transformation frame T𝑏 ∈ R3×4
to control the displacement on

each vertex x𝑖 :
x𝑖 =

∑︁
𝑏

𝜔𝑖𝑏T𝑏X̄𝑖 , (12)

where X̄𝑖 = (XT

𝑖
, 1)T ∈ R4

andX𝑖 is the rest position of vertex 𝑖 . The

standard LBS form in Eq. 12 can be rewritten using the Kronecker

product ⊗ to align with the interpolation matrix P:

x𝑖 =
∑︁
𝑏

P𝑖𝑏q𝑏 , P𝑖𝑏 = 𝜔𝑖𝑏 I3 ⊗ X̄T

𝑖 , q𝑏 = 𝑣𝑒𝑐 (T𝑏 ) ∈ R12, (13)

where 𝑣𝑒𝑐 (T𝑏 ) is the row vectorization of T𝑏 , and P𝑖𝑏 ∈ R3×12
is the

sub-block matrix of P corresponding to x𝑖 and handle 𝑏. To enhance
the sparsity of coarse level matrix PTAP, Xian et al. [2019] employ a

piece-wise constantweight𝜔𝑖𝑏 , which ensures each vertex 𝑖 only has

nonzero weight for one nearest handle 𝑏𝑖 (𝜔𝑖𝑏𝑖 = 1) and zero weight

for all other handles. As a result, the interpolated displacement

field x is a discontinuous piece-wise affine field, with each handle

fully controlling its neighboring region. The discontinuities between

handle regions are mainly localized errors, which can be efficiently

smoothed out using smoothers. At coarser levels, direct aggregation

of neighboring handles is employed as the restriction operation. For

more details please refer to the original paper.

We extend the LBS interpolation scheme from [Xian et al. 2019]

to incorporate the pressure DoF within mixed P1/P1 elements. Our

key insight is that a vertex’s pressure p𝑖 can be viewed as the fourth

DoF, similar to the displacement DoF x𝑖 = (x0

𝑖
, x1

𝑖
, x2

𝑖
). If we consider

the x-axis component of displacement separately in Eq. 12 with a

piece-wise constant weight, we have:

x0

𝑖 = T0

𝑏𝑖
X̄𝑖 =

(
g𝑏𝑖 t𝑏𝑖

) (X𝑖

1

)
= g𝑏𝑖X𝑖 + t𝑏𝑖 , (14)

Here T0

𝑏𝑖
∈ R1×4

is the first row of T𝑏𝑖 , which can be further de-

composed into g𝑏𝑖 ∈ R1×3
as the slope and t𝑏𝑖 ∈ R as the offset.

From Eq. 14, if we view each component of displacement as a scalar

field in the rest configuration, the effect of LBS is a piece-wise linear

interpolation of the scalar field. Since the pressure is also a scalar

field, we can apply the same treatment as displacement, resulting in

a compact interpolation scheme:(
x𝑖
p𝑖

)
= T′

𝑏𝑖
X̄𝑖 = I4 ⊗ X̄T

𝑖 𝑣𝑒𝑐 (T′
𝑏𝑖
), P𝑖𝑏𝑖 = I4 ⊗ X̄T

𝑖 , (15)

where T′
𝑏𝑖
∈ R4×4

is the extended affine trans-

formation matrix that includes the slope and

offset of pressure, and 𝑣𝑒𝑐 (T′
𝑏𝑖
) ∈ R16

is the

DoF on handle 𝑏𝑖 , with the first 12 DoF corre-

sponding to displacements and the last 4 DoF

corresponding to pressure. The new sub-block

matrix P𝑖𝑏𝑖 in the interpolation matrix P is of

size 4 × 16 now. This form of interpolation also

suggests an opportunity for optimizing the stor-

age of the system matrix A. Notice that K, G, GT
, and the stabilized

C from Section 4 all exhibit the same sparsity pattern, allowing us

to reorganize the system matrix A from a structure of arrays (SoA)

layout to an array of structures (AoS) layout, thereby transforming

it into a 4x4-block sparse matrix:

A𝑖 𝑗 =

(
K𝑖 𝑗 GT

𝑖 𝑗

G𝑖 𝑗 −C𝑖 𝑗

)
∈ R4×4 . (16)

Applying the interpolation in Eq. 15, the system matrix turns into

a 16x16-block matrix, with each block aggregated from the finest

level:

(PTAP)𝑏𝑖𝑏 𝑗
=

(
I4 ⊗ X̄T

𝑖

)
T

A𝑖 𝑗

(
I4 ⊗ X̄T

𝑗

)
= A𝑖 𝑗 ⊗

(
X̄𝑖 X̄T

𝑗

)
. (17)

The final coarse system PTAP is the sum of Eq. 17 for all the 𝑖 − 𝑏𝑖
and 𝑗 − 𝑏 𝑗 pairs. For coarser levels, we restrict the system DoF by

ordinary handle aggregation, i.e. adding coarse DoFs from multiple

neighboring handles into one coarser handle, ensuing the 16x16-

block structure is preserved. In this way, our interpolation scheme

can be seen as a 4-dim extension of the 3-dim version in [Xian et al.

2019], inheriting all its implementation and efficiency benefits. We

validate our interpolation scheme in the example in Fig. 11. We

construct a two-level multigrid using 100 handles (1600 DoFs) for a

cube with 31k vertices (93k DoFs). Our multigrid exhibit superior

convergence speed compared to only using the fine-level smoother

and reduces the volume gain much faster.

5.2 Smoother
Owing to the indefinite nature of the saddle point problem outlined

in Eq. 6, traditional smoothing techniques such as Jacobi, Gauss-

Seidel, and successive over relaxation exhibit poor convergence

rate. Developing an effective smoother has been a central focus in

previous works on multigrid methods for mixed FEM [Benzi et al.

2005; Oosterlee and Gaspar 2008]. Among these methods, the Vanka-

type smoother [Vanka 1986], wildly used as a domain decomposition

smoother, serves as the basis for our approach.

The Vanka-type smoother partitions the computational domain Ω
into smaller, overlapping subdomains {Ω𝑚}, and directly solves the

small indefinite KKT system for each subdomain Ω𝑚 successively:

(R𝑚ART

𝑚)u𝑚 = R𝑚 (b − Au), u← u + 𝜔RT

𝑚u𝑚 . (18)

ACM Trans. Graph., Vol. 43, No. 6, Article 258. Publication date: December 2024.



258:8 • Liangwang Ruan, Bin Wang, Tiantian Liu, and Baoquan Chen

Fig. 6. Vanka Subdomains. The pressure DoFs are illustrated using squares
and the position DoFs are illustrated using dots.The cell-oriented Vanka
(left) uses both position and pressure DoFs in a cell as a subdomain; The
patch-based Vanka (middle) uses a single pressure DoF and all connected
position DoFs as a subdomain. Our vertex-based Vanka (right) uses only the
position and pressure DoFs associated with a single vertex as a subdomain.

Here R𝑚 is the DoF restriction operator for subdomain Ω𝑚 , R𝑚ART

𝑚

is the restricted KKT matrix, and 𝜔 is the relaxation parameter. Pre-

vious engineering papers [Emami 2013; John and Tobiska 2000;

Larin and Reusken 2008] identify two type of Vanka smoothers:

the cell-oriented Vanka(’cVanka’), which defines Ω𝑚 to include all

the pressure DoFs and displacement DoFs within a cell, and the

patch-based Vanka (’pVanka’), which defines Ω𝑚 to include one

pressure DoF and all the connected displacement DoFs, as demon-

strated in Fig. 6. While these smoothers offer good convergence

speed per iteration, they suffer from poor parallelism. To parallelize

’cVanka’, element colorization is required, similar to XPBD [Macklin

and Muller 2021], often requires many colors depending on the

maximum degree of the element adjacency graph of the mesh. In

a moderate case, such as the octopus with 40k vertices and 112k

elements shown in Fig. 7, a total of 216 colors are needed. The situa-

tion is similar for the ’pVanka’ smoother, as the second-order vertex

neighbors must be colored differently.

To enhance parallelism on the GPU, we propose our vertex Vanka

smoother (’vVanka’), where each subdomain encompasses only one

vertex’s displacement and pressure DoF, as shown in Fig. 6. This

concept aligns with the approach proposed by [Wu et al. 2022] which

utilizes non-overlapping subdomains in the Schwarz preconditioner

for SPD systems. For parallelism, we color each vertex using the

method described by Fratarcangeli et al. [2016], following the same

principle as recent works by Chen et al. [2024b] and Chen et al.

[2024a]. Moreover, if we use the AoS arrangement of the matrix

from Section 5.1, the vVanka smoother can be equivalently viewed

as a classic block Gauss-Seidel smoother, except the local 4x4 system

is now an indefinite KKT system.

We compare the performance of our vertex Vanka smoother with

other popular smoothers. Here, we briefly explain the basic concepts

of these smoothers. For implementation details, please refer to the

supplemental material. The Kaczmarz smoother [Stefan 1993] trans-

forms the indefinite systemAu = b into a SPD system by solving the

normal equation A2y = b, with u = Ay, where parallel Jacobi itera-
tions can be applied rather than parallel Gauss-Seidel constrained by

the sparsity pattern of A2
. The inexact Uzawa smoother [Elman and

Golub 1994] takes advantage of the fact that K and the stabilized C
in Eq. 6 are SPD. Therefore, x and p can be smoothed independently

using traditional smoothers. We identity two variations of inexact

Uzawa smoothers: the ’jUzawa’ smoother that uses Jacobi itera-

tions and the ’gUzawa’ smoother that uses Gauss-Seidel iterations.

We also compare an additive variation of the cell-oriented Vanka

Fig. 7. Smoother Comparison. vVanka: Our vertex Vanka smoother. cVanka:
Cell-oriented Vanka. aVanka: Additive cell-oriented Vanka. jUzawa: Inexact
Uzawa using Jacobi for position update. gUzawa: Inexact Uzawa usingGuass-
Seidel for positions update. Kaczmarz: Kazmarz smoother using Jacobi. The
number in the legend refers to the relaxation parameter of each smoother.
Each figure demonstrate the convergence curve at a random frame from
three different scenes: the cube (31k vertices and 156k elements, 𝜈 = 0.4999)
from Fig. 11, the octopus (40k vertices and 112k elements, 𝜈 = 0.499) from
Fig. 9, the armadillo (77k vertices and 340k elements, 𝜈 = 0.49) from Fig. 13
with real-time interaction.

smoother (’aVanka’), which updates all the subdomains simultane-

ously in a Jacobi-like manner, adding the contribution from multiple

subdomains to each vertex. We fine-tune the relaxation parameters

for all smoothers independently to achieve their best performance,

the results are shown in Fig. 7.

Among all smoothers, our vertex Vanka smoother (shown as the

blue curve) demonstrates the fastest residual reduction speed with

respect to time. Although the ’cVanka’ smoother (shown as the

purple curve) shows the best convergence per iteration, its poor

parallelism flattens its overall convergence speed in time. Switch-

ing to the additive ’avanka’ smoother (shown as the gray curve)
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Fig. 8. Wave. Two kinematically-controlled spheres are dropped onto the hydrogel with Young’s module 𝐸 = 3𝑒5 and Poisson’s ratio 𝜈 = 0.4999. The top row is
simulated using MiNNIE, the second row is simulated using linear FEM (multigrid solver by Xian et al. [2019] with the stable Neo-Hookean material [Smith
et al. 2018]). We show the 35th, 104th, 160th, 275th frames of both simulations. MiNNIE accurately reproduces the dynamic wave-like response of extremely
soft, incompressible material induced by large impacts, while linear FEM generates large unnatural deformations suffering from volumetric locking.

reduces per-iteration cost but scarifies too much convergence speed

due to Jacobi iterations. The convergence speed of inexact Uzawa

smoothers, ’jUzawa’ and ’gUzawa’ (shown as the green and yellow

curves), are hindered by their asynchronous updates of x and p,

making them more sensitive to relaxation parameters than our ver-

tex Vanka smoother. The Kaczmarz smoother (shown as the orange

curve), which squares the system matrix and its condition number,

shows the poorest performance.

At the coarser levels, we can apply the same vertex Vanka strategy,

with each subdomain containing all the 16 DoF on each handle, i.e.

the 𝑣𝑒𝑐 (T′
𝑏
) defined in Eq. 15. We adopt the MINRES [Paige and

Saunders 1975] iteration to solve the 16 × 16 indefinite matrix for

each handle. To further accelerate the convergence of MINRES, we

apply a 4x4-block diagonal preconditioner to the 16 × 16 system,

utilizing its 4x4-block structure as shown in Eq. 17. To ensure the

positive definiteness of the preconditioner, we need to negate the

last 4 × 4 block since it corresponds to the −C block for pressures.

Our block preconditioner can reduce the condition number of the

16×16 system from 1𝑒4 to 1𝑒2, while a direct diagonal preconditioner

can only halve the condition number.

5.3 Dense Solver
At the coarsest level, the system matrix is usually small (several

thousands dimension) and can be solved by a direct solver. We

propose to use Schur complement to further accelerate this process:

(K𝑙 + GT

𝑙
C−1

𝑙
G𝑙 )𝛿x𝑙 = f𝑙 + G𝑇

𝑙
C−1

𝑙
g𝑙 ,

𝛿p𝑙 = C−1

𝑙
(G𝑙𝛿x𝑙 − g𝑙 ).

(19)

In this formulation, C−1

𝑙
can be precomputed and cached at the

beginning of the simulation, since the stabilized C at the finest level

(Section 4) and the interpolation matrix (Section 5.1) are all constant

matrices. This allows us to solve a smaller system K𝑙 +GT

𝑙
C−1

𝑙
G𝑙 at

run time, which is also SPD, leveraging the well-established parallel

Cholesky (LLT) factorization. By taking this strategy, our dense

solver typically takes less than 2 ms per solve, as exampled in Fig. 9,

which is significantly faster than directly solving the original indef-

inite system. Additionally, in the extreme case where 𝜈 = 0.5 and

C𝑙 is not invertible, we add a small regularization term (1e-6) to the

diagonal of C𝑙 . This is equivalent to using an approximate Hessian

matrix, having no effect on the final solution since the right-hand

side remains the same.

6 CONSTITUTIVE MODELS
MiNNIE accommodates various constitutive models in graphics.

Their split forms that conform to Eq. 1 are:

• Neo-Hookean [Bonet and Wood 2008]:

Ψ𝑑 =
𝜇
2
(𝐼𝑐 − 3) − 𝜇 log 𝐽 , 𝜇 = 𝐸

2(1+𝜈 ) ,

Ψ𝑣 =
𝜅
2
(log 𝐽 )2, Φ(𝐽 ) = log 𝐽 , 𝜅 = 𝐸𝜈

(1+𝜈 ) (1−2𝜈 ) .
• stable Neo-Hookean [Smith et al. 2018]:

Ψ𝑑 =
𝜇
2
(𝐼𝑐 − 3) − 𝜇 (𝐽 − 1), 𝜇 = 𝐸

2(1+𝜈 ) ,

Ψ𝑣 =
𝜅
2
(𝐽 − 1)2, Φ(𝐽 ) = 𝐽 − 1, 𝜅 = 𝐸

2(1+𝜈 ) (1−2𝜈 ) .
• Mooney-Rivlin [Barbič et al. 2012]:

Ψ𝑑 = 𝜇10 (𝐽 −
2

3 𝐼𝑐 − 3) + 𝜇01

2
(𝐽 −

4

3 (𝐼2

𝑐 − 𝐼 𝐼𝑐 ) − 6),
𝜇01 + 𝜇10 = 𝐸

4(1+𝜈 ) ,

Ψ𝑣 =
𝜅
2
(𝐽 − 1)2, Φ(𝐽 ) = 𝐽 − 1, 𝜅 = 𝐸

3(1−2𝜈 ) .
• Corotation [McAdams et al. 2011]:

Ψ𝑑 = 𝜇∥F − R∥2, 𝜇 = 𝐸
2(1+𝜈 ) ,

Ψ𝑣 =
𝜅
2

tr
2 (S − I), Φ(F) = tr(S − I), 𝜅 = 𝐸𝜈

(1+𝜈 ) (1−2𝜈 ) .
• StVK [Barbič et al. 2012]:

Ψ𝑑 = 𝜇tr(E)2, E = 1

2
(FTF − I), 𝜇 = 𝐸

2(1+𝜈 ) ,

Ψ𝑣 =
𝜅
2

tr
2 (E), Φ(F) = tr(E), 𝜅 = 𝐸𝜈

(1+𝜈 ) (1−2𝜈 ) .

In these expressions, 𝐼𝑐 = tr(FFT), 𝐼 𝐼𝑐 = tr(FFTFFT), 𝐽 = det F,
F = RS is the polar decomposition, 𝐸 is the Young’s modulus, 𝜈 is

the Poisson’s ratio. Although these splitting forms cause 𝜅 and Ψ𝑣
to approach infinity as 𝜈 → 0.5, their ability to preserve volume

depends on the specific definition of Φ. Φ in Corotation and StVK

can be viewed as linearized versions of the volume constraint near
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Fig. 9. Multigrid time breakdown. An octopus with 40k vertices, 112k ele-
ments, and a Poisson’s ratio of 𝜈 = 0.499 requires 11.2 ms per frame. The
time consuming of each component is shown in the figure. Most of the time
is spent on smoothers, followed by the update of multi-level matrices.

rest configurations [Patterson et al. 2012], but not as a true volume

constraint 𝐽 = det F = 1. Thus, although we can enforce Φ = 0 by

setting a large 𝜈 , the volume is not conserved as shown in Fig. 4.

Among these constitutive models, we favor the stable Neo-Hookean

model in our experiments for its stability and robustness to element

inversions. Moreover, the 𝜅 in stable Neo-Hookean is
𝐸
2
≠ 0 when

𝜈 = 0, so we can safely deal with the
1

𝜅 term in Eq. 3 for all Poisson’s

ratios.

To ensure the descent direction of Newton’s iteration and to

robustly handle element inversions that occur during large defor-

mations, we also need to perform SPD projection of K = 𝜕2𝐿/𝜕x2
in

Eq. 6 at runtime. According to the definition in Eq. 4, the positional

Hessian K of 𝐿(x, p) is only related to the constant mass matrix

M/ℎ2
and𝑈𝑑 (x) + p

Tϕ, the latter of which can be expended using

Eq. 9:

𝑈𝑑 (x) + p
Tϕ =

∑︁
𝑒

Ψ𝑑 (F𝑒 )𝑉𝑒 +
∑︁
𝑒

p̄𝑒Φ(F𝑒 )𝑉𝑒

=
∑︁
𝑒

(Ψ𝑑 (F𝑒 ) + p̄𝑒Φ(F𝑒 ))𝑉𝑒 .
(20)

Comparing Eq. 20 with the standard linear FEM, the only difference

is to change the summation of Ψ𝑣 (F𝑒 ) to p̄𝑒Φ(F𝑒 ). In other words,

we can assume the mixed form Ψ𝑑 (F) + p̄Φ(F) is the “constitutive
model” of x. For instance, the mixed form of stable Neo-Hookean

material is Ψ𝑑 (F) + p̄Φ(F) = 𝜇
2
(𝐼𝑐 − 3) + (p̄ − 𝜇) (𝐽 − 1), whose

explicit eigensystem is given in [Smith et al. 2018]. The p̄ term

can be interpreted as the geometric stiffness of the constraints as

explained by Tournier et al. [2015]. For all the isotropic distortion

energies we used in this paper, we adopt the positive definiteness

fix technique described in [Smith et al. 2019] to ensure the projected

positional Hessian K is SPD.

7 RESULTS

7.1 Implementation
We implement MiNNIE on GPU using the CUDA [NVIDIA 2024].

All the examples are tested on an AMD Ryzen 9 7950X 16-Core CPU

and a Nvidia RTX 4090 GPU. We scale the pressure DoF in Eq. 6 as

in [Zarifi and Batty 2017] to mitigate the numerical scale difference

between position and pressure DoF. The positional constraints and

Fig. 10. Comparisons with theoretical solutions [Romero et al. 2021] on the
cantilever test. MiNNIE produces physical correct results for all Poisson’s
ratios, while classic linear FEM suffers from locking under large Poison’s
ratio. Additionally, MiNNIE converges much faster than linear FEM with
[Xian et al. 2019] under all Poison’s ratios.

collisions are handled by adding quadratic penalties only to position

DoFs [Xian et al. 2019]. For self-collision detection, we apply the

spatial hashing method from [Teschner et al. 2003] for its simplicity.

Due to the use of P1/P1 elements, all the previous self-collision

treatments for tetrahedral meshes can be applied to our method. We

follow the semi-implicit time integration without line-search [Baraff

and Witkin 1998] to simulate all dynamics cases. We also use the

quasi-Newton solution for pressure stabilization to handle all quasi-

static cases as described in Sec. 4. The parameter table and time

statistics for all our examples are listed in Tab. 2. A time breakdown

in a single multigrid solve of the octopus example is shown in Fig. 9.

We manually adjust the number of iterations and other parameters

for each example to optimize performance. For most examples, we

apply 6 smoother iterations and set the relaxation parameter 𝜔

to 0.4. However, for the cube-random (Fig. 12) and wave (Fig. 8)

examples, we usemore conservative parameters due to their extreme

initialization or material parameters. We could further reduce the

number of smoother iterations or increase 𝜔 for better performance.

However, as discussed in the limitations in Section 8, too aggressive

settings may lead to instabilities.

7.2 Validations
Physical validation & Comparison with FEM. To validate the phys-

ical correctness of MiNNIE, we set up the cantilever protocol test

described in [Romero et al. 2021]: a slender horizontal cylinder (ra-

dius 𝑟 = 0.3, length 𝐿 = 6) with one end fixed deforms under gravity,

as shown in Fig. 10. If correctly solved, the dimensionless gravito-

bending parameter Γ = (1 − 𝜈2) 𝜌𝐴𝑔𝐿
3

𝐸𝐼
= (1 − 𝜈2) 4𝜌𝑔𝐿3

𝐸𝑟 2
and the
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Table 2. Parameter Table. "V(n)" stands for n times of our vertex Vanka smoother, "D" stands for direct solver. 𝜔 is the relaxation parameter for smoothers. 𝐸 is
the Young’s modulus, 𝜈 is the Poisson’s ratio. 𝛼 is the pressure stabilization constant. ℎ is the timestep size, "/" stands for quasi-static simulation. FPS stands
for frame per second. For all the examples, we set the density 𝜌 = 1𝑒3, and 𝑔 = 9.8 if gravity is applied.

Examples #verts #elems grid set-up solver set-up 𝜔 𝐸 𝜈 𝛼 ℎ FPS

bunny-torus (Fig. 1) 47k 223k 100/200/all D/V(3)/V(6) 0.4 2e6 0.49 1 1e-2 60

bunny-dance (Fig. 2) 47k 223k 100/200/all D/V(3)/V(6) 0.4 2e6 0.49 1 3e-2 60

cylinder (Fig. 4a) 13k 67k 100/all D/V(6) 0.4 3e5 0.49 1 / 160

tube (Fig. 4b) 15k 79k 100/all D/V(6) 0.5 3e6 0.49 1 / 158

cube-gravity (Fig. 5) 14k 70k 100/all D/V(6) 0.4 1e5 0.4999 1 / 160

cube-twist (Fig. 11) 31k 156k 100/all D/V(6) 0.4 1e7 0.4999 1 / 110

cube-random (Fig. 12) 4k 25k 100/all D/V(10) 0.2 1e7 0.4999 20 / 155

octopus (Fig. 9) 40k 112k 50/200/all D/V(6)/V(6) 0.4 1e6 0.499 1 1e-2 88

Cantilever (Fig. 10) 8k 34k 100/all D/V(3) 0.7 1e7 0.4999 1 / 229

bulging (Fig. 3) 10k 57k 100/all D/V(3) 0.5 1e7 0∼0.5 1 / 210

wave (Fig. 8) 30k 159k 100/300/all D/V(8)/V(10) 0.7 3e5 0.4999 1 5e-3 72

letters (Fig. 14) 105k 371k 80/400/all D/V(3)/V(6) 0.5 1e6 0.49999 1 1e-2 38

armadillo (Fig. 13) 20k 88k 100/all D/V(6) 0.4 5e6 0.49 1 1e-2 142

armadillo (Fig. 13) 35k 187k 100/all D/V(6) 0.4 5e6 0.49 1 1e-2 107

armadillo (Fig. 13) 77k 340k 100/300/all D/V(6)/V(6) 0.4 5e6 0.49 1 1e-2 53

armadillo (Fig. 13) 117k 598k 100/200/400/all D/V(6)/V(6)/V(6) 0.4 5e6 0.49 1 1e-2 35

armadillo (Fig. 13) 182k 1017k 100/400/800/1600/all D/V(6)/V(6)/V(6)/V(6) 0.4 5e6 0.49 1 1e-2 21

height-width ratio of the equilibrium state
𝐻
𝑊

follow a parameter-

free curve, called the "master curve" [Romero et al. 2021], plotted as

the black curve in Fig. 10. We sample different Γ by changing the

density 𝜌 , the Young’s module 𝐸, the gravity 𝑔, and check the final

height-width ratio
𝐻
𝑊

using MiNNIE, compared with the classic

linear FEM using the same stable Neo-Hookean model [Smith et al.

2018]. As shown in Fig. 10, MiNNIE fits the master curve for all Pois-

son’s ratios, while classic linear FEM only satisfies the master curve

under 𝜈 = 0.49, and gradually deviates from it as Poisson’s ratio

increases. This deviation highlights the locking issue of classic FEM

under large Poisson’s ratio, i.e. the height-width ratio
𝐻
𝑊

is much

smaller than expected, indicating a stiffer-than-expected material

behavior. We also compare the convergence speed of MiNNIE and

linear FEM using the fast GPU solver [Xian et al. 2019] by tracking

the relative error of the height-width ratio
𝐻
𝑊

as shown at the bot-

tom of Fig. 10. MiNNIE (shown as the dash curves) converges to

the final solution in a few iterations regardless of Poisson’s ratios,

while linear FEM (shown as the solid curves) requires many more

iterations and slows down as 𝜈 increases.

When direct compressing or stretching is applied, significant lock-

ing can be observed even under 𝜈 = 0.49, as shown in Fig. 4. In the

top row, Fig. 4a shows a stable Neo-Hookean elastic cylinder with

𝐸 = 3𝑒5, 𝜈 = 0.49 being stretched by a metal block (weight 1.2𝑒5 kg)

attached at the bottom. The results show that linear FEM exhibits

locking artifact, resulting in less stretch of the elastic cylinder, while

MiNNIE produces results almost identical to those of second-order

FEM. At the bottom, Fig. 4b shows a tube with 𝐸 = 3𝑒6, 𝜈 = 0.49

being compressed to 70% of its height by fixing the top and bottom

surfaces. MiNNIE behaves similarly to the second-order FEM, in-

cluding the sharp crease on the inner surface, while the result of

linear FEM using [Xian et al. 2019] is much flatter. MiNNIE also

Fig. 11. Convergence of different solvers. A cube with 31k vertices, 156k
elements, and Poisson’s ratio 𝜈 = 0.4999 recovers to an equilibrium state
after being twisted and stretched. The figure shows the convergence of
residuals (top-left), volume gains (top-right), and position errors (bottom).
MiNNIE demonstrates the fastest convergence, and can restore the volume
gain to less than 1% in just two iterations.

supports the Corotation model without locking, though the volume

is less preserved as explained in Section 6.
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Fig. 12. Inversion Test. We randomize the vertices of a cube with Poisson’s
ratio 𝜈 = 0.4999. The inverted elements are colored in pink. MiNNIE can
robustly recover the cube to its rest pose from states containing degenerated
or inverted elements.

Fig. 13. MiNNIE’s time cost scales linearly with the increasing number
of elements. Snapshots at the 0th, 200th, and 300th frames for both the
coarsest mesh example (20k vertices and 88k elements, shown in the top
left) and the finest mesh example (182k vertices and 1017k elements, shown
in the bottom right) demonstrate similar trajectories.

Convergence. We set up a quasi-static example of a twisting cube

to compare the convergence of different solvers on the same mixed

FEM problem. Initially, a cube consisting of 31k vertices and 156k

elements, with Poisson’s ratio 𝜈 = 0.4999 is linearly rotated by 180

degrees and vertically stretched by 1.5 times. Then we release the

cube while fixing the top and the bottom vertices, and compute

the residual of Eq. 6, the volume gain, and the position error to

the converged configuration, as shown in Fig. 11. We compare four

solvers: MiNNIE, vertex Vanka smoother, MINRES [Paige and Saun-

ders 1975], the nonlinear Uzawa method used in [Frâncu et al. 2021].

We also tune the relaxation parameters for all solvers independently

to reach their best performance. As shown in Fig. 11, MiNNIE has

the best performance on all fronts. The gap between MiNNIE and

pure vertex Vanka smoother shows the effectiveness of our multi-

grid scheme. The flattened tail of MiNNIE’s residual curve is due

to the quasi-Newton approximation explained in Section 4, which

does not affect the fast convergence of positions as shown in the

error curve at the bottom. The nonlinear Uzawa method [Frâncu

et al. 2021] has the worst convergence in this case. Unlike the other

methods, the nonlinear Uzawa method updates the positions and

pressures unsynchronized, so it needs more iterations to converge

compared with the other methods that update positions and pres-

sures simultaneously.

Inversion test. To test the robustness of MiNNIE, we fix the two

corners of a cube (4k vertices, 25k elements, Poisson’s ratio 𝜈 =

0.4999), and start the simulation from a randomized pose. The initial

state’s signed volume is 44.89% of the rest volume, and has a lot of

inverted elements. MiNNIE can recover the cube to its rest configu-

ration in real-time (155 fps). To handle this ill-conditioned problem,

the pressure stabilization constant 𝛼 should be set higher and the

relaxation parameter 𝜔 should be set lower than other regular cases.

We find 𝛼 = 20, 𝜔 = 0.2 works well in this case. We present this

extreme example as a robustness test, demonstrating that MiNNIE

can handle infeasible initial states with reasonable boundary con-

ditions. However, MiNNIE does not support boundary conditions

that conflict with the incompressibility constraints, for example,

compressing an incompressible material in all directions.

Scalability. An armadillo with 𝐸 = 3𝑒6, 𝜈 = 0.49, and both ear tips

fixed is swinging under gravity. We gradually refine the model from

the lowest level with 20k vertices and 88k elements to the highest

level with 182k vertices and 1017k elements over five levels. For

each level, we record the average computation time per frame using

our multigrid solver. As shown by the solid curve in Fig. 13, with the

system adequately solved, indicated by the roughly similar motion

at the highest and lowest levels, the time cost of our multigrid solver

scales linearly with the number of elements.

7.3 Examples
Bunny. MiNNIE avoids volumetric locking better than linear FEM

under 𝜈 = 0.49 in dynamic case, as shown in Fig. 1 and Fig. 2. In

the torus-squeezing example of Fig. 1, MiNNIE generates detailed

fat folds more vividly than linear FEM. In the dancing example of

Fig. 2, MiNNIE generates more dynamic and hilarious movements,

while the result of linear FEM is much stiffer. In terms of efficiency,

MiNNIE is only 20% slower than the GPU multigrid solver of linear

FEM by Xian et al. [2019] in both examples.

Bulging. MiNNIE can demonstrate the bulging effect of bending

elbows under different Poisson’s ratios 𝜈 from 0 to 0.5, as shown in

Fig. 3. As the Poisson’s ratio increases, more tissues bulge out at the

joint due to self-collisions. MiNNIE preserves the total volume to a

loss at only < 0.01% when setting 𝜈 = 0.5.

Wave. MiNNIE can simulate extremely soft yet volume-conserved

elastic bodies such as hydrogel to generate fluid-like waves, as

shown in Fig. 8. The hydrogel in the tank has 30k vertices and 159k

elements, a Young’s module of 𝐸 = 3𝑒5, and a Poisson’s ratio of

𝜈 = 0.4999. It takes only 14 ms per frame to simulate large impact

waves and detailed secondary waves. We also compare our results

with linear FEM which suffers from volumetric locking artifacts.

Letters. We show the excellent scalability of MiNNIE by dropping

elastic letters to a box as shown in Fig. 14. The scene has 105k vertices

and 371k elements, up to 30k self-collision pairs. It takes less than

20 ms per frame to update and solve the system and averages 26

ms in total, including collision detection and re-colorization for our

vertex Vanka smoother. We set the Poisson’s ratio of the letters

to 𝜈 = 0.49999 and find the volume fluctuation during the entire

simulation is bounded under 0.05%. Note that MiNNIE does not
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Fig. 14. Six sets of near-incompressible elastic "SIGGRAPH" letters with Poisson’s ratio 𝜈 = 0.49999, consisting of 105k vertices and 371k elements, are
dropped into a box. These letters generate vivid deformations with volume fluctuation below 0.05%. Our method takes less than 20 ms per frame to solve the
elasto-dynamics of the letters and an average of 26 ms to simulate an entire frame, including self-collision handling.

suffer from any volumetric locking issues and generates dynamic,

squashy animations of the letters.

8 CONCLUSIONS, LIMITATIONS & FUTURE WORK
MiNNIE simulates nonlinear near-incompressible elastics in real

time. The point of departure of MiNNIE is a mixed FEM framework

using P1/P1 elements [Frâncu et al. 2021] that avoids locking issues.

However, direct solvers and vanilla Krylov methods do not meet the

real-time requirement for our mixed FEM problem. We observe that

simple pressure stabilization can mitigate the checkerboard artifacts

that used to hinder the convergence of multigrid solvers. We also use

a quasi-Newton method to minimize the extra nodal displacement

introduced by pressure stabilization. Once the checkerboard artifacts

are gone, we design a specially tailored multigrid solver for mixed

FEM and implement it on GPU. Our multigrid scheme consists of

a modified skinning-space interpolation scheme [Xian et al. 2019],

an efficient vertex Vanka smoother, and a prefactorized dense-level

linear solver. We equip MiNNIE with various elastic material models

to simulate a full range of Poisson’s ratios up to 0.5. As a result, it

simulates large near-incompressible scenarios containing hundreds

of thousands of elements in real time, producing vivid visual effects,

as shown in Fig. 1, Fig. 2, and Fig. 14.

The major limitation of MiNNIE is the introduction of extra tun-

able parameters such as the stabilization constant 𝛼 and the relax-

ation parameter 𝜔 for smoothers. The choice of these hyperparam-

eters can affect our system’s convergence. Though we provide a

quasi-Newton treatment and show the robustness with many diffi-

cult cases in this paper, inappropriate choice of hyperparameters

may still crash the simulation. On the other hand, the MINRES

method is guaranteed to converge for our cases, even without the

pressure stabilization [Paige and Saunders 1975]. But MINRES con-

verges much slower than our multigrid solver due to poor condition-

ing. An interesting future direction is to design a better precondi-

tioner for MINRES, similar to the multilevel Schwarz preconditioner

for the conjugate gradient method proposed by [Wu et al. 2022].

We are also interested in extending our mixed multigrid solver to

other simulation tasks where the stiffness of some energy terms

can go extremely high, for instance, the barrier energy in IPC [Li

et al. 2020], the spring energy in inextensible cloth [Goldenthal et al.

2007], materials with dramatic heterogeneity [Chen et al. 2019], etc..

We look forward to building high-performance solvers for these

difficult problems as well.
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