
MiNNIE: aMixed Multigrid Method for Real-Time Simulation of
Nonlinear Near-Incompressible Elastics (Supplemental Material)
LIANGWANG RUAN, School of Computer Science, Peking University, China
BIN WANG, State Key Laboratory of General Artificial Intelligence, BIGAI, China
TIANTIAN LIU∗, Taichi Graphics, China
BAOQUAN CHEN∗, State Key Laboratory of General Artificial Intelligence, Peking University, China

A MIXED FEM
From the paper, elastodynamic simulations can be equated as the
following saddle point problem:

(𝒙𝑛+1, 𝑝𝑛+1) = argmin
𝒙

max
𝑝
L(𝒙, 𝑝),

L(𝒙, 𝑝) =
∫
Ω
[𝑇 (𝒙) + Ψ𝑑 (𝒙) + 𝑝Φ −

1
2𝜅 𝑝

2]𝑑Ω.
(1)

With P1/P1 elements, the displacement field 𝒙 and pressure field 𝑝
are discretized as:

𝒙 =
∑︁
𝑖

𝑁𝑖 (𝑿 )x𝑖 , 𝑝 =
∑︁
𝑖

𝑁𝑖 (𝑿 )p𝑖 , (2)

in which 𝑁𝑖 (𝑿 ) is the linear shape function of vertex 𝑖 . We use italic
letters like 𝒙 , 𝑝 for continuous field, and roman letters like x𝑖 , p𝑖 for
discrete values on vertices. The values on vertices can be further
concatenated into a long vector x ∈ R3𝑛 , p ∈ R𝑛 , where 𝑛 is the
number of vertices. We now derive the discrete form of each term
in Eq. 1. For the 𝑇 (𝒙) and Ψ𝑑 (𝒙) terms, the treatment is the same
as classic linear FEM:∫

Ω
𝑇 (𝒙)𝑑Ω =

∫
Ω

𝜌

2ℎ2
∥𝒙 − 𝒙∗∥2

=
1
2ℎ2

∑︁
𝑖 𝑗

(x𝑖 − x∗𝑖 )
𝑇

(∫
Ω
𝜌𝑁𝑖𝑁 𝑗𝑑Ω

)
(x𝑗 − x∗𝑗 )

=
1
2ℎ2
(x − x∗)𝑇M(x − x∗) .

(3)

The mass matrixM is approximated by a diagonal matrix:

M ≈ Diag{𝑚1, · · · ,𝑚𝑛},𝑚𝑖 =

∫
Ω
𝜌𝑁𝑖𝑑Ω =

∑︁
𝑒∈N𝑖

1
4𝜌𝑉𝑒 . (4)

N𝑖 is the set of neighboring elements of vertex 𝑖 ,𝑉𝑒 is the volume of
element 𝑒 in rest configuration. For the Ψ𝑑 (𝒙) term, the deformation
gradient F is constant within each element 𝑒 , which gives:∫

Ω
Ψ𝑑 (𝒙)𝑑Ω =

∑︁
𝑒

Ψ𝑑 (F𝑒 )𝑉𝑒 := 𝑈𝑑 (x). (5)
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For the mixed volume term 𝑝Φ − 1
2𝜅 𝑝

2, we have:∫
Ω

(
𝑝Φ − 1

2𝜅 𝑝
2
)
𝑑Ω =

∑︁
𝑒

Φ(F𝑒 )
∫
Ω𝑒

(∑︁
𝑖

𝑁𝑖 (𝑿 )p𝑖

)
𝑑Ω

− 1
2𝜅

∑︁
𝑖 𝑗

∫
Ω
𝑁𝑖 (𝑿 )𝑁 𝑗 (𝑿 )p𝑖p𝑗𝑑Ω,

(6)

where we utilize the fact Φ(F𝑒 ) is constant within each element 𝑒 for
linear shape functions. By defining ϕ ∈ R𝑛 , C ∈ R𝑛×𝑛 as follows:

ϕ𝑖 =
∑︁
𝑒

Φ(F𝑒 )
∫
Ω𝑒

𝑁𝑖 (𝑿 )𝑑Ω =
1
4

∑︁
𝑒∈N𝑖

Φ(F𝑒 )𝑉𝑒 ,

C𝑖 𝑗 =
1
𝜅

∫
Ω
𝑁𝑖 (𝑿 )𝑁 𝑗 (𝑿 )𝑑Ω,

(7)

Eq. 6 can be rewritten into a matrix form:∫
Ω
𝑝Φ − 1

2𝜅 𝑝
2𝑑Ω = pTϕ − 1

2p
TCp. (8)

Here ϕ is the discrete volume constraint at each vertex, C is the
inverse stiffness matrix of volume constraint. For simplicity, we can
apply the same diagonal treatment of mass matrixM in Eq. 4 to C,
i.e.:

C ≈ Diag{𝑉1
𝜅
, · · · , 𝑉𝑛

𝜅
},𝑉𝑖 =

1
4

∑︁
𝑒∈N𝑖

𝑉𝑒 . (9)

Combining Eq. 3, 5, 8, we get the discrete saddle point problem from
Eq. 1:

(x𝑛+1, p𝑛+1) = argmin
x

max
p

𝐿(x, p),

𝐿(x, p) = 1
2ℎ2
∥x − x∗∥2M +𝑈𝑑 (x) + p

Tϕ − 1
2p

TCp.
(10)

The solution of Eq. 10 satisfies the following discrete Karush-
Kuhn-Tucker (KKT) condition:

f (x, p) = − 𝜕𝐿
𝜕x

=
M
ℎ2
(x∗ − x) + f𝑑 − GTp = 0 ∈ R3𝑛,

g(x, p) = − 𝜕𝐿
𝜕p = Cp − ϕ = 0 ∈ R𝑛,

(11)

where f𝑑 = − 𝜕𝑈𝑑

𝜕x ∈ R
3𝑛 is the distortion force, G =

𝜕ϕ
𝜕x ∈ R

𝑛×3𝑛 is
the positional gradient of volume constraint. By the definition of
Eq. 7, we have:

G𝑖 𝑗 =
𝜕ϕ𝑖
𝜕x𝑗

=
1
4

∑︁
𝑒∈N𝑖

𝜕Φ(F𝑒 )
𝜕x𝑗

𝑉𝑒 . (12)

We use Newton-Raphson iteration to solve this KKT system. Starting
from a initial guess (x0, p0), at each step the following linear system
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is solved:

Au = b, A =

(
K GT

G −C

)
, u =

(
𝛿x
𝛿p

)
, b =

(
f
g

)
, (13)

in which K = − 𝜕f
𝜕x = 𝜕2𝐿

𝜕x2 .

B SMOOTHERS FOR MIXED FEM
The indefinite system we need to solve is the Eq. 5 in the paper:

Au = b, A =

(
K G𝑇

G −C

)
, u =

(
x
𝑝

)
, b =

(
f
𝑔

)
, (14)

where we ignore the 𝑘 superscript to simplify notations. A general
representation of a stationary iteration solver can be expressed in
the following form:

u𝑚+1 ← u𝑚 + Â−1 (b − Au𝑚), (15)

where Â is an approximation ofA that is designed for easy inversion.

B.1 Kaczmarz Smoother
The Kaczmarz smoother [Stefan 1993] addresses the indefiniteness
of the system by solving the normal equation A2y = b, where
u = Ay. Due the poor sparsity of A2, Jacobi iterations are welcomed
in terms of parallelism, resulting in the following form:

𝛿y𝑚 = 𝜔Diag(A2)−1 (b − Au𝑚),
u𝑚+1 ← u𝑚 + A𝛿y𝑚,

(16)

where 𝜔 is the relaxation parameter. Though its simplicity, the A2

in Kaczmarz smoother has squared condition number compared to
the original system, making it slow to converge. This smoother is
used in [Setaluri et al. 2015] for 2D deformations.

B.2 Inexact Uzawa Smoother
The inexact Uzawa smoother [Elman and Golub 1994] belongs to a
large group of block smoothers, which use the Schur complement
factorization to approximate the system matrix A[Drzisga et al.
2018]:

A =

(
K GT

G −C

)
=

(
I 0

GK−1 I

) (
K 0
0 −S

) (
I K−1GT

0 I

)
, (17)

where S = C + GK−1GT. The inexact Uzawa smoother only use the
first two matrices to approximate A:

Â =

(
I 0

GK̂−1 I

) (
K̂ 0
0 −Ŝ

)
=

(
K̂ 0
G −Ŝ

)
, (18)

in which K̂ and Ŝ are the approximation of K and S using standard
smoothers like Jacobi or Gauss-Seidel. According to Eq. 18, the
inexact Uzawa smoother updates x and 𝑝 sequentially at each step:

x𝑚+1 ← x𝑚 + 𝜔K̂−1 (f𝑚 − Kx𝑚 − GTp𝑚),
p𝑚+1 ← p𝑚 + 𝜔 Ŝ−1 (g𝑚 − Gx𝑚+1 + Cp𝑚).

(19)

in which𝜔 is the relaxation parameter. For positional DoFs, Jacobi or
Gauss-Seidel iterations can be used because K is SPD. For pressure
DoF, since S holds poor sparsity and K−1 in it, the most efficient way
is to use Jacobi iterations for an approximated S: C+GDiag(K)−1GT.

The inexact Uzawa smoother in Eq. 19 might be confused with
the nonlinear Uzawa method in [Frâncu et al. 2021]:

x𝑚+1 = argmin
x

𝐿(x, p𝑚),

p𝑚+1 = p𝑚 + 𝜔𝜙 (x𝑘+1).
(20)

To clear the difference, the inexact Uzawa smoother only smooth
the equation and serves as a part of a Newton iteration, while the
nonlinear Uzawa method solves the optimization problem sepa-
rately, which is no longer a Newton method. Also the inexact Uzawa
smoother uses Jacobi iterations for pressure DoFs, while the nonlin-
ear Uzawa method uses Richardson iteration.

B.3 Vanka Smoother
The Vanka-type smoother [Vanka 1986] partitions the entire sim-
ulation domain Ω into subdomains {Ω𝑚}, and directly solves the
small indefinite KKT system for each subdomain Ω𝑚 successively:

(R𝑚ART𝑚)u𝑚 = R𝑚 (b − Au), u← u + 𝜔RT𝑚u𝑚 . (21)

Here R𝑚 is the DoF restriction operator of subdomain Ω𝑚 , A𝑚 =

R𝑚ART𝑚 is the restricted KKT matrix, 𝜔 is the relaxation parameter.
The Â of the Vanka smoother has the following form:

I − AÂ−1 =
∏
Ω

(I − ART𝑚𝜔A−1𝑚 R𝑚), (22)

In previous papers[Emami 2013; John and Tobiska 2000; Larin and
Reusken 2008], there are generally two type of Vanka smoothers:
the cell-oriented Vanka that defines Ω𝑚 to have all the pressure
DoFs and displacement DoFs in a cell, the patch-based Vanka that
defines Ω𝑚 to have one pressure DoF and all the displacement DoFs
connected to it.
For the cell-oriented Vanka solves a A𝑚 ∈ R16𝑥16 for each ele-

ment, where the MINRES [Paige and Saunders 1975] iteration or
direct solver can be applied. To parallelize it, we need to colorize
neighboring elements to different colors, process parallelly within
each color groups and sequentially between groups. As we men-
tioned in our paper, this might requires over 200 colors for a large
mesh, in contrast to only a dozen of colors are needed to colorize
vertices. For patch-based Vanka, the dimension of A𝑖 relates to the
number of neighboring vertices of vertex 𝑖 , which might be over
20 in common meshes, thus A𝑖 might has a dimension over 60. To
parallelize it, we need to colorize vertices that don’t share a com-
mon neighbor to different colors, i.e. to colorize the square of the
original connectivity graph of vertices. Again, hundreds of colors
are needed.

The additive Vanka method [Saberi et al. 2022] on the other hand
is more parallel-friendly, which has a much simpler form of Â:

Â−1 =
∑︁
Ω

R𝑇𝑚𝜔A−1𝑚 R𝑚 . (23)

All the subdomains can be processed in parallel without coloriza-
tion, accumulating updates to all vertices at the same time. The
times of updates on one vertex equals the number of subdomains
overlapping with it, which can be easily over hundred. This strongly
limits the relaxation parameter 𝜔 , making additive Vanka smoother
hard to tune and slow to converge.
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