
Quasi-Newton Methods for Real-time Simulation of
Hyperelastic Materials
Tiantian Liu
University of Pennsylvania
Sofien Bouaziz
École polytechnique fédérale de Lausanne
and
Ladislav Kavan
University of Utah

We present a new method for real-time physics-based simulation supporting
many different types of hyperelastic materials. Previous methods such as
Position Based or Projective Dynamics are fast, but support only limited se-
lection of materials; even classical materials such as the Neo-Hookean elas-
ticity are not supported. Recently, Xu et al. [2015] introduced new “spline-
based materials” which can be easily controlled by artists to achieve desired
animation effects. Simulation of these types of materials currently relies on
Newton’s method, which is slow, even with only one iteration per timestep.
In this paper, we show that Projective Dynamics can be interpreted as a
quasi-Newton method. This insight enables very efficient simulation of a
large class of hyperelastic materials, including the Neo-Hookean, spline-
based materials, and others. The quasi-Newton interpretation also allows
us to leverage ideas from numerical optimization. In particular, we show
that our solver can be further accelerated using L-BFGS updates (Limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm). Our final method
is typically more than 10 times faster than one iteration of Newton’s method
without compromising quality. In fact, our result is often more accurate than
the result obtained with one iteration of Newton’s method. Our method is
also easier to implement, implying reduced software development costs.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation

General Terms: Physics-based Animation

Additional Key Words and Phrases: Physics-based animation, material
models, numerical optimization.

ACM Reference Format:
Liu, T., Bouaziz, S., and Kavan, L.. 2016. Quasi-Newton Methods for Real-
Time Simulation of Hyperelastic Materials. ACM Trans. Graph. VV, N,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/17-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

Article XXX (Month 2016), 16 pages.
DOI = 10.1145/1559755.1559763
http://doi.acm.org/10.1145/1559755.1559763

1. INTRODUCTION

Physics-based animation is an important tool in computer graph-
ics even though creating visually compelling simulations often re-
quires a lot of patience. Waiting for results is not an option in real-
time simulations, which are necessary in applications such as com-
puter games and training simulators, e.g., surgery simulators. Pre-
vious methods for real-time physics such as Position Based Dy-
namics [Müller et al. 2007] or Projective Dynamics [Bouaziz et al.
2014] have been successfully used in many applications and com-
mercial products, despite the fact that these methods support only a
restricted set of material models. Even classical models from con-
tinuum mechanics, such as the Neo-Hookean, St. Venant-Kirchoff,
or Mooney-Rivlin materials, are not supported by Projective Dy-
namics. We tried to emulate their behavior with Projective Dynam-
ics, but despite our best efforts, there are still obvious visual differ-
ences when compared to simulations with the original non-linear
materials.

The advantages of more general material models were nicely
demonstrated in the recent work of Xu et al. [2015], who pro-
posed a new class of spline-based materials particularly suitable for
physics-based animation. Their user-friendly spline interface en-
ables artists to easily modify material properties in order to achieve
desired animation effects. However, their system relies on New-
ton’s method, which is slow, even if the number of Newton’s iter-
ations per frame is limited to one. Our method enables fast sim-
ulation of spline-based materials, combining the benefits of artist-
friendly material interfaces with the advantages of fast simulation,
such as rapid iterations and/or higher resolutions.

Physics-based simulation can be formulated as an optimiza-
tion problem where we minimize a multi-variate function g. New-
ton’s method minimizes g by performing descent along direction
−(∇2g)−1∇g, where ∇2g is the Hessian matrix, and ∇g is the
gradient. One problem of Newton’s method is that the Hessian∇2g
can be indefinite, in which case the Newton’s direction could er-
roneously increase g. This undesired behavior can be prevented
by so-called “definiteness fixes” [Teran et al. 2005; Nocedal and
Wright 2006]. While definiteness fixes require some computational
overheads, the slow speed of Newton’s method is mainly caused by

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

2 • T. Liu, S. Bouaziz and L. Kavan

Corotated Linear Elasticity

Our method: 20.1 ms/frame

Newton's method 308 ms/frame

Neo-Hookean

Our method: 17.8 ms/frame

Newton's method 305 ms/frame

St. Venant Kirchhoff

Our method: 17.2 ms/frame

Newton's method 305 ms/frame

Polynomial Material

Our method: 21.5 ms/frame

Newton's method 308 ms/frame

Spline-based Material A

Our method: 36.6 ms/frame

Newton's method 315 ms/frame

Spline-based Material B

Our method: 30.7 ms/frame

Newton's method 316 ms/frame

Fig. 1. Our method enables fast simulation of many different types of hyperelastic materials. Compared to the commonly-applied Newton’s method, our
method is about 10 times faster, while achieving even higher accuracy and being simpler to implement. The Polynomial and Spline-based materials are models
recently introduced by Xu et al. [2015]. Spline-based material A is a modified Neo-Hookean material with stronger resistance to compression; spline-based
material B is a modified Neo-Hookean material with stronger resistance to tension.

the fact that the Hessian changes at every iteration, i.e., we need to
solve a new linear system for every Newton step.

The point of departure for our method is the insight that Projec-
tive Dynamics can be interpreted as a special type of quasi-Newton
method. In general, quasi-Newton methods [Nocedal and Wright
2006] work by replacing the Hessian∇2g with a linear operator A,
where A is positive definite and solving linear systems Ax = b is
fast. The descent directions are then computed as−A−1∇g (where
the inverse is of course not explicitly evaluated, in fact, A is of-
ten not even represented with a matrix). The trade-off is that if A
is a poor approximation of the Hessian, the quasi-Newton method
may converge slowly. Unfortunately, coming up with an effective
approximation of the Hessian is not easy. We tried many previous
quasi-Newton methods, but even after boosting their performance
with L-BFGS [Nocedal and Wright 2006], we were unable to ob-
tain an effective method for real-time physics. We show that Pro-
jective Dynamics can be re-formulated as a quasi-Newton method
with some remarkable properties, in particular, the resulting Aour

matrix is constant and positive definite. This re-formulation enables
us to generalize the method to hyperelastic materials not supported
by Projective Dynamics, such as the Neo-Hookean or spline-based
materials. Even though the resulting solver is slightly more com-
plicated than Projective Dynamics (in particular, we must employ
a line search to ensure stability), the computational overhead re-
quired to support more general materials is rather small.

The quasi-Newton formulation also allows us to further improve
convergence of our solver. We propose using L-BFGS, which uses

curvature information estimated from a certain number of previ-
ous iterates to improve the accuracy of our Hessian approxima-
tion Aour. Adding the L-BFGS Hessian updates introduces only a
small computational overhead while accelerating the convergence
of our method. However, the performance of L-BFGS highly de-
pends on the quality of the initial Hessian approximation. With
previous quasi-Newton methods, we observed rather disappointing
convergence properties (see Figure 7). The combination of our Hes-
sian approximation Aour with L-BFGS is quite effective and can be
interpreted as a generalization of the recently proposed Chebyshev
Semi-Iterative method for accelerating Projective Dynamics [Wang
2015].

The L-BFGS convergence boosting is compatible with our first
contribution, i.e., fast simulation of complex non-linear materi-
als. Specifically, we can simulate any materials satisfying the
Valanis-Landel assumption [Valanis and Landel 1967] which in-
cludes many classical materials, such as St. Venant-Kirchhoff, Neo-
Hookean, Mooney-Rivlin, and also the recently proposed spline-
based materials [Xu et al. 2015] (none of which is supported by
Projective Dynamics). In summary, our final method achieves faster
convergence than Projective Dynamics while being able to simulate
a large variety of hyperelastic materials.

2. RELATED WORK

The work of Terzopoulos et al. [1987] pioneered physics-based an-
imation, nowadays an indispensable tool in feature animation and
visual effects. Real-time physics became widespread only more

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 3

recently, with first success stories represented by real-time rigid
body simulators, commercially offered by companies such as Ha-
vok since early 2000s. Fast simulation of deformable objects is
more challenging because they feature many more degrees of free-
dom than rigid bodies. Fast simulations of deformable objects using
shape matching [Müller et al. 2005; Rivers and James 2007] paved
the way towards more general Position Based Dynamics methods
[Müller et al. 2007; Stam 2009]. The past decade witnessed rapid
development of Position Based methods, including improvements
of the convergence [Müller 2008; Kim et al. 2012], robust simula-
tion of elastic models [Müller and Chentanez 2011], generalization
to fluids [Macklin and Müller 2013] and continuum-based mate-
rials [Müller et al. 2014; Bender et al. 2014], unified solvers in-
cluding multiple phases of matter [Macklin et al. 2014], and most
recently, methods to avoid element inversion [Müller et al. 2015].
We refer to a recent survey [Bender et al. 2014] for a more detailed
summary of Position Based methods.

A new interpretation of Position Based methods was offered by
Liu et al. [2013], observing that Position Based Dynamics can
be interpreted as an approximate solver for Implicit Euler time-
stepping. The same paper introduces a fast local/global solver for
mass-spring systems integrated using Implicit Euler. This method
was later generalized to Projective Dynamics [Bouaziz et al. 2014]
by combining the ideas of [Liu et al. 2013] with a shape editing
system “Shape-Up” [Bouaziz et al. 2012]. Recently, a Chebyshev
Semi-Iterative method [Wang 2015] has been proposed to accel-
erate convergence of Projective Dynamics, while exploring also
highly parallel GPU implementations of real-time physics. Concur-
rently to our work, Narain et al. [2016] interpreted Projective Dy-
namics as a special case of Alternating Direction Method of Mul-
tipliers (ADMM), leading to another way to enable simulation of
more general elastic materials.

Multi-grid methods represent another approach to accelerate
physics-based simulations [Georgii and Westermann 2006; Müller
2008; Wang et al. 2010; McAdams et al. 2011; Tamstorf et al.
2015]. Multi-grid methods are attractive especially for highly de-
tailed meshes where sparse direct solvers become hindered by high
memory requirements. However, constructing multi-resolution data
structures and picking suitable parameters is not a trivial task. An-
other way to speed up FEM is by using subspace simulation where
the nodal degrees of freedom are replaced with a low-dimensional
linear subspace [Barbič and James 2005; An et al. 2008; Li et al.
2014]. These methods can be very efficient; however, deforma-
tions that were not accounted for during the subspace construction
may not be well represented. A variety of approaches have been
designed to address this limitation while trying to preserve effi-
ciency [Harmon and Zorin 2013; Teng et al. 2014; Teng et al. 2015].
Simulating at coarser resolutions is also possible, while crafting
special data-driven materials which avoid the loss of accuracy typ-
ically associated with lower resolutions [Chen et al. 2015].

The concept of constraint projection, which appears in both
Position Based and Projective Dynamics, is also central to the
Fast Projection method [Goldenthal et al. 2007] and strain-limiting
techniques [Thomaszewski et al. 2009; Narain et al. 2012]. The
Fast Projection method and Position Based Dynamics formulate
physics simulation as a constrained optimization problem that
is solved by linearizing the constraints in the spirit of sequen-
tial quadratic programming [Macklin et al. 2014]. The resulting
Karush-Kuhn-Tucker (KKT) equation system is then solved us-
ing a direct solver [Goldenthal et al. 2007] or an iterative method
such as Gauss-Seidel [Müller et al. 2007; Stam 2009; Fratarcangeli
and Pellacini 2015], Jacobi [Macklin and Müller 2013], or their
under/over-relaxation counterparts [Macklin et al. 2014]. By using

a constrained optimization formulation the Fast Projection method
and Position Based Dynamics are designed for solving infinitely
stiff systems but are not appropriate to handle soft materials. This
problem can be overcome by regularizing the KKT system [Servin
et al. 2006; Tournier et al. 2015], leading to approaches that can
accurately handle extremely high tensile forces (e.g., string of a
bow) but also support soft (compliant) constraints. However, these
methods are slower than Projective Dynamics because a new linear
system has to be solved at each iteration.

The idea of quasi-Newton methods in elasticity is not new and
has been studied long time before real-time simulations were feasi-
ble. Several research papers have been done to accelerate Newton’s
method in FEM simulations by updating the Hessian approxima-
tion only once every frame [Bathe and Cimento 1980; Fish et al.
1995]. However, even one Hessian update is usually so computa-
tionally expensive that can not fit into the computing time limit of
real-time applications. Deuflhard [2011] minimizes the number of
Hessian factorizations by carefully scheduled Hessian updates. But
the update rate will heavily depend on the deformation. A good
Hessian approximation suitable for real-time applications should
be easy to refactorize or capable of prefactorization. One straight-
forward constant approximation which is good for prefactorization
is the Hessian evaluated at the rest-pose (undeformed configura-
tion). The rest-pose Hessian is positive semi-definite and its use
at any configuration enables pre-factorization. Unfortunately, the
actual Hessian of deformed configurations is often very different
from the rest-pose Hessian and this approximation is therefore not
satisfactory for larger deformations [Müller et al. 2002].

To improve upon this, Müller et al. [2002] introduced per-vertex
“stiffness warping” of the rest-pose Hessian, which is more accu-
rate and can still leverage pre-factorized rest-pose Hessian. Unfor-
tunately, the per-vertex stiffness warping approach can introduce
non-physical ghost forces which violate momentum conservation
and can lead to instabilities [Müller and Gross 2004]. This problem
was addressed by per-element stiffness warping [Müller and Gross
2004] which avoids the ghost forces but, unfortunately, the per-
element-warped stiffness matrices need to be re-factorized, intro-
ducing computational overheads which are prohibitive in real-time
simulation. For corotated elasticity, Hecht et al. [2012] proposed
an improved method which can reuse previously computed Hessian
factorization. Specifically, the sparse Cholesky factors are updated
only when necessary and also only where necessary. This spatio-
temporal staging of Cholesky updates improves run-time perfor-
mance, however, the Cholesky updates are still costly and their
scheduling can be problematic especially in real-time applications,
which require approximately constant per-frame computing costs.
Also, the frequency of Cholesky updates depends on the simula-
tion: fast motion with large deformations will require more fre-
quent updates and thus more computation, or risking ghost forces
and potential instabilities. Neither is an option in real-time sim-
ulators. Recently, Kovalsky et al. [2016] introduced the idea of
quadratic proxies to accelerate optimization problems arising in ge-
ometry processing. The “quadratic proxy” can be seen as replacing
the exact Hessian matrix with the Laplacian matrix of the mesh;
their method can be therefore also categorized as a quasi-Newton
method, closely related to our method.

Our re-formulation of Projective Dynamics as a quasi-Newton
method reveals relationships to so called “Sobolev gradient meth-
ods”, which have been studied since the 1980s in the continuous
setting [Neuberger 1983]; see also the more recent monograph
[Neuberger 2009]. The idea of quasi-Newton methods appears al-
ready in [Desbrun et al. 1999; Hauth and Etzmuss 2001] in the
context of mass-spring systems and, more recently, in [Martin et al.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

4 • T. Liu, S. Bouaziz and L. Kavan

2013] in the context of geometry processing. Martin et al. [2013]
also propose multi-scale extensions and discuss an application in
physics-based simulation, but consider only the case of thin shells
and their numerical method alters the physics of the simulated sys-
tem. Quasi-Newton methods are also useful in situations where
computation of the Hessian would be expensive or impractical [No-
cedal and Wright 2006]. In character animation, Hahn et al. [2012]
used BFGS to simulate physics in “Rig Space”, which is challeng-
ing because the rig is a black box function and its derivatives are
approximated using finite differences.

3. BACKGROUND

Projective Dynamics. We start by introducing our notation and
recapitulating the key concepts of Projective Dynamics. Let x ∈
Rn×3 be the current (deformed) state of our system containing n
nodes, each with three spatial dimensions. Projective Dynamics
requires a special form of elastic potential energies, based on the
concept of constraint projection. Specifically, Projective Dynamics
energy for element number i is defined as:

Ei(x) = min
pi∈Mi

Ẽi(x,pi), Ẽi(x, z) = ‖Gix− z‖2F , (1)

where ‖ · ‖F is the Frobenius norm,Mi is a constraint manifold,
pi is an auxiliary “projection variable”, and Gi is a discrete differ-
ential operator represented, e.g., by a sparse matrix. For example, if
element number i is a tetrahedron,Mi is SO(3), and Gi is defor-
mation gradient operator [Sifakis and Barbič 2012], we obtain the
well-known as-rigid-as-possible material model [Chao et al. 2010].
Another elementary example is a spring, where the element is an
edge,Mi is a sphere, and Gi subtracts two endpoints of the spring.
If all elements are springs, Projective Dynamics becomes equiva-
lent to the work of Liu et al. [2013]. The key property of Gi is that
constant vectors are in its nullspace, which makes Ei translation
invariant. The total energy of the system is:

E(x) =
∑
i

wiEi(x), (2)

where i indexes elements andwi > 0 is a positive weight, typically
defined as the product of undeformed volume and stiffness.

Time integration. As discussed by Martin et al. [2011], Backward
Euler time integration can be expressed as a minimization of:

g(x) =
1

2h2
tr((x− y)TM(x− y))︸ ︷︷ ︸

inertia

+ E(x)︸ ︷︷ ︸
elasticity

, (3)

where y is a constant depending only on previously computed
states, M is a positive definite mass matrix (typically diagonal –
mass lumping), and h > 0 is the time step (we use fixed h cor-
responding to the frame rate of 30fps, i.e., h = 1/30s). The
trace (tr) reflects the fact that there are no dependencies between
the x, y, z coordinates, which enables us to work only with n × n
matrices (as opposed to more general 3n × 3n matrices). This is
somewhat moot in the context of the mass matrix M, but it will
be more important in the following. The constant y is defined as
y := 2ql − ql−1 + h2M−1fext, where ql ∈ Rn×3 is the current
state, ql−1 the previous state, and fext ∈ Rn×3 are external forces
such as gravity. The minimizer of g(x) will become the next state,
ql+1. Intuitively, the first term in Eq. 3 can be interpreted as “iner-
tial potential,” attracting x towards y, where y corresponds to state
predicted by Newton’s first law – motion without the presence of
any internal forces. The second term penalizes states x with large

elastic deformations. Minimization of g(x) corresponds to finding
balance between the two terms. Note that many other implicit in-
tegration schemes can also be expressed as minimization problems
similar to Eq. 3. In particular, we have implemented Implicit Mid-
point, which has the desirable feature of being symplectic [Hairer
et al. 2002; Kharevych et al. 2006]. Unfortunately, in our experi-
ments we found Implicit Midpoint to be markedly less stable than
Backward Euler and, therefore, we continue to use Backward Euler
despite its numerical damping.

Local/global solver. The key idea of Projective Dynamics is to ex-
pose the auxiliary projection variables pi, taking advantage of the
special energy form according to Eq. 1. To simplify notation, we
stack all projection variables into p ∈ Rc×3 and define binary se-
lector matrices Si such that pi = Sip, where c is the dimension-
ality of each constraint, e.g., a spring corresponds to c = 1 and
a tetrahedron to c = 3. Projective Dynamics uses the augmented
objective:

g̃(x,p) =
1

2h2
tr((x− y)TM(x− y)) +

∑
i

wiẼ(x,Sip), (4)

which is minimized over both x and p, subject to the constraint
p ∈ M, where M is a cartesian product of the individual con-
straint manifolds. The optimization is solved using an alternating
(local/global) solver. In the local step, x is assumed to be fixed; the
optimal p are given by projections on individual constraint mani-
folds, e.g., projecting each deformation gradient (a 3×3 matrix) on
SO(3). In the global step, p is assumed to be fixed and we rewrite
the objective g̃(x,p) in matrix form:

1

2h2
tr((x− y)TM(x− y)) +

1

2
tr(xTLx)− tr(xTJp) +C, (5)

where L :=
∑
wiG

T
iGi, J :=

∑
wiG

T
i Si, and Gi is a linear

mapping from state vector x to an element-wise deformation repre-
sentation, e.g. deformation gradient in finite element methods. Gi

only depends on the mesh topology and the rest-pose shapes of all
elements. The constant C is irrelevant for optimization. For a fixed
p, the minimization of g̃(x,p) can be accomplished by finding x
with a vanishing gradient, i.e.,∇xg̃(x,p) = 0. Computing the gra-
dient yields some convenient simplifications (the traces disappear):

∇xg̃(x,p) =
1

h2
M(x− y) + Lx− Jp. (6)

Equating the gradient to zero leads to the solution:

x∗ = (M/h2 + L)−1(Jp + My/h2). (7)

The matrix M/h2 + L is symmetric positive definite and there-
fore x∗ is a global minimum (for fixed p). The key computational
advantage of Projective Dynamics is that M/h2 + L does not de-
pend on x, which allows us to pre-compute and repeatedly reuse its
sparse Cholesky factorization to quickly solve for x∗, which is the
result after one local and global step. The local and global steps are
repeated for a fixed number of iterations (typically 10 or 20).

4. METHOD

As described in the previous section, Projective Dynamics relies
on the special type of elastic energies according to Eq. 1. Let us
now describe how Projective Dynamics can be interpreted as a
quasi-Newton method. The first step is to compute the gradient of
the objective g(x) from Eq. 3. The energy E(x) used in this ob-
jective contains constrained minimization over the projection vari-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 5

Soft Projective Dynamics Material Stiff Projective Dynamics Material Polynomial Material

overly
rigid

shape
distorted

gentle
motion

impulsive
motion

frame 47

frame 139

frame 47

frame 139

frame 47

frame 139

Fig. 2. Animating jiggly squirrel head. The squirrel head is driven by a gentle keyframed motion in the top row, and by a faster, impulsive motion in
the bottom row. Soft Projective Dynamics material (left column) creates nice secondary motion, but does not prevent large distortions of the shape. If we
stiffen the Projective Dynamics material (middle column), we prevent the distortions, but also kill the secondary motion. Our polynomial material a(x) =

µ(x− 1)4, b(x) = 0, c(x) = 0 (right column) achieves the desired effect of jiggling without large shape distortions.

ables pi ∈ Mi (see Eq. 1 and Eq. 2). Equivalently, we can inter-
pret the pi as functions of x realizing the projections, according to
Eq. 1. Nevertheless, the gradient ∇g(x) can still be computed eas-
ily – in fact, it is exactly equivalent to∇xg̃(x,p) from Eq. 6 where
we assumed that p is constant. This at first surprising fact has been
observed in previous work [Chao et al. 2010; Bouaziz et al. 2012].
Intuitively, the reason is that if we infinitesimally perturb x, its pro-
jection pi(x) can move only in the tangent space ofMi and there-
fore, the differential δpi(x) has no effect on δ‖x − pi(x)‖2. As
an intuitive explanation, imagine that x is a space shuttle projected
to its closest point on Earth pi(x); to first order, the distance of
the space shuttle from Earth does not depend on the tangent motion
δpi(x). Please see the Appendix for a more formal discussion. In
summary, the gradient of Eq. 3 is:

∇g(x) =
1

h2
M(x− y) + Lx− Jp(x), (8)

where p(x) is a function stacking all of the individual projec-
tions pi(x). Newton’s method would proceed by computing sec-
ond derivatives, i.e, the Hessian matrix∇2g(x), and use it to com-
pute a descent direction −(∇2g(x))−1∇g(x). Note that definite-
ness fixes may be necessary to guarantee this will really be a de-
scent direction [Gast et al. 2015].

What happens if we modify Newton’s method by using M/h2 +
L instead of the Hessian∇2g(x)? Simple algebra reveals:

(M/h2 +L)−1∇g(x) = x− (M/h2 +L)−1(Jp(x) +My/h2).

However, the latter term is equivalent to the result of one itera-
tion of the local/global steps of Projective Dynamics, see Eq. 7.
Therefore, (M/h2 + L)−1∇g(x) = x − x∗ and we can interpret

dPD := −(M/h2 + L)−1∇g(x) as a descent direction (this time
there is no need for any definiteness fixes). Projective Dynamics
can be therefore understood as a quasi-Newton method which com-
putes the next iterate as x+dPD. Typically, quasi-Newton methods
use line search techniques [Nocedal and Wright 2006] to find pa-
rameter α > 0 such that x + αdPD reduces the objective as much
as possible. However, with Projective Dynamics energies according
to Eq. 1, the optimal value is always α = 1.

4.1 More general materials

The interpretation of Projective Dynamics as a quasi-Newton
method suggests that a similar optimization strategy might be ef-
fective for more general elastic potential energies. First, let us fo-
cus on isotropic materials, deferring the discussion of anisotropy to
Section 4.4. The assumption of isotropy (material-space rotation
invariance) together with world-space rotation invariance means
that we can express elastic energy density function Ψ as a function
of singular values of the deformation gradient [Irving et al. 2004;
Sifakis and Barbič 2012]. In the volumetric case, we have three sin-
gular values σ1, σ2, σ3 ∈ R, also known as “principal stretches”.
The function Ψ(σ1, σ2, σ3) must be invariant to any permutation
of the principal stretches, e.g., Ψ(σ1, σ2, σ3) = Ψ(σ2, σ1, σ3) etc.
Because directly working with such functions Ψ could be cumber-
some, we instead use the Valanis-Landel hypothesis [Valanis and
Landel 1967], which assumes that:

Ψ(σ1, σ2, σ3) = a(σ1) + a(σ2) + a(σ3)+

b(σ1σ2) + b(σ2σ3) + b(σ1σ3) + c(σ1σ2σ3),
(9)

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

6 • T. Liu, S. Bouaziz and L. Kavan

where a, b, c : R → R. Many material models can be writ-
ten in the Valanis-Landel form, including linear corotated material
[Sifakis and Barbič 2012], St. Venant-Kirchhoff, Neo-Hookean,
and Mooney-Rivlin. The recently proposed spline-based materials
[Xu et al. 2015] are also based on the Valanis-Landel assumption.
How can we generalize Projective Dynamics to these types of ma-
terials? Invoking the quasi-Newton interpretation discussed above,
our method will minimize the objective g by performing descent
along direction d(x) := −(M/h2 + L)−1∇g(x). The mass ma-
trix M and step size h are defined as before, and computing∇g(x)
is straightforward. But how to define a matrix L for a given material
model? This matrix can still have the form L :=

∑
wiG

T
iGi, but

the question is how to choose the weightswi. In Projective Dynam-
ics, we assumed the weights are given as wi = Viki, where Vi > 0
is rest-pose volume of i-th element, and ki > 0 is a stiffness pa-
rameter provided by the user. In our case, the user instead specifies
a material model according to Eq. 9 from which we have to infer
the appropriate ki value. In the following we drop the subscript i
for ease of notation.

For linear materials (Hooke’s law), stiffness is given as the sec-
ond derivative of elastic energy. Therefore, it would be tempt-
ing to set k equal to the second derivative of Ψ at the rest pose
(corresponding to σ1 = σ2 = σ3 = 1), which evaluates to
a′′(1) + 2b′′(1) + c′′(1), regardless of whether we differentiate
with respect to σ1, σ2, or σ3. Even though this method would
produce suitable k for some materials (such as corotated elastic-
ity), it does not work e.g. for a polynomial material defined as
a(x) = µ(x−1)4, b(x) = 0, c(x) = 0. Already this relatively sim-
ple material can facilitate certain animation tasks, such as creating
a cartoon squirrel head which jiggles, but does not overly distort its
shape, see Figure 2. However, with this material, the second deriva-
tives at x = 1 evaluates to zero regardless of the value of µ, which
would lead to zero stiffness which is obviously not a good approx-
imation. The problem is the second derivative takes into account
only infinitesimally small neighborhood of x = 1, i.e., the rest
pose. However, we need a single value of k which will work well
in the entire range of deformations expected in our simulations. To
capture this requirement, we define an interval [xstart, xend] where
we expect our principal stretches to be. We consider the following
stress function:

f(σ1) =
∂Ψ

∂σ1

∣∣∣∣
σ2=1,σ3=1

= a′(σ1) + 2b′(σ1) + c′(σ1), (10)

and define our k as the slope of the best linear approximation of
Eq. 10 at [xstart, xend]. Formally:

k := argmin
k

∫ xend

xstart

(k(x− 1)− f(x))2dx. (11)

Note that due to the symmetry of the Valanis-Landel assumption,
we would obtain exactly the same result if we differentiated with
respect to σ2 or σ3 (instead of σ1 as above). We study different
choices of [xstart, xend] intervals in Section 5. In summary, the re-
sults are not very sensitive on the particular choice of xstart and
xend. The key fact is that regardless of the specific setting of xstart
and xend, spatial variations of µ are correctly taken into account,
i.e., softer and stiffer parts of the simulated object will have dif-
ferent µ coefficients (e.g., in our squirrel head we made the teeth
more stiff). Even though all elements have the same [xstart, xend]
interval, the resulting matrices L and J properly reflect the spatially
varying stiffness.
Line search. With Projective Dynamics materials (Eq. 1), the line
search parameter α = 1 is always guaranteed to decrease the ob-

Algorithm 1: Quasi-Newton Solver

1 x1 := y; g(x1) := evalObjective(x1)
2 for k = 1, . . . ,numIterations do
3 ∇g(xk) := evalGradient(xk)
4 d(xk) := −(M/h2 + L)−1∇g(xk)
5 α := 2
6 repeat
7 α := α/2
8 xk+1 := xk + αd(xk)
9 g(xk+1) := evalObjective(xk+1)

10 until g(xk+1) ≤ g(xk) + γα tr((∇g(xk))Td(xk));
11 end

frame 23 frame 24

Fig. 3. Without line search, the squirrel head animation using our polyno-
mial material (as in Figure 2) quickly becomes unstable.

jective g (Eq. 3). Unfortunately, this is no longer true in our gen-
eralized quasi-Newton setting, where it is easy to find examples
where g(x + d(x)) > g(x), i.e., taking a step of size one actually
increases the objective. This can lead to erroneous energy accu-
mulation, potentially resulting in catastrophic failure of the simu-
lation (“explosions”), as shown in Figure 3. Fortunately, thanks to
the fact that M/h2 + L is positive definite, d(x) is guaranteed
to be a descent direction. Therefore, there exists α > 0 such that
g(x + αd(x)) ≤ g(x) (unless we are already at a critical point
∇g(x) = 0, at which point the optimization is finished). In fact,
we can ask for even more, i.e., we can always find α > 0 such that
g(x+αd(x)) ≤ g(x) + γα tr((∇g(x))Td(x)) for some constant
γ ∈ (0, 1) (we use γ = 0.3). This is known as the Armijo condition
which expresses the requirement of “sufficient decrease” [Nocedal
and Wright 2006], preventing the line search algorithm from reduc-
ing the objective only by a negligible amount. Another requirement
for robust line search is to avoid too small steps α even though they
might satisfy the Armijo condition. We tested two possible strate-
gies: 1) backtracking line search algorithm that satisfies only the
Armijo condition, and 2) line search algorithm that satisfies both
the Armijo condition and the “curvature condition” (collectively
known as “Wolfe conditions”). The details of our experiments can
be found in Section 5; in summary, we found that both methods lead
to comparable error reduction, but the backtracking line search is
faster. In our final algorithm, we therefore use the backtracking line
search. Specifically, we set the initial α to 1 and multiply it by 0.5
after every failed attempt. This line search strategy is used in all our
experiments.

Alg. 1 summarizes the process of computing one frame of our
simulation. The outer loop (lines 2-11) performs quasi-Newton it-
erations and the inner loop (lines 6-10) implements the line search.
What is the extra computational cost required to support more gen-
eral materials? With Projective Dynamics energies (Eq. 1), we do
not need the line search, because α = 1 always works. Indeed, if
we drop the line search from Alg. 1, the algorithm becomes equiv-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 7

alent to a generalized local/global process, as discussed in Sec-
tion 3 (which is unstable for non-Projective-Dynamics energies).
Rejected line search attempts, i.e., additional iterations of the line
search, represent the main computational overhead of our method.
Fortunately, we found that in practical simulations the number of
extra line search iterations is relatively small. For example, in the
squirrel head example in Figure 2 using the polynomial material,
we need only 4280 line search iterations for the entire sequence
with 400 frames, 10 quasi-Newton iterations per frame, i.e., the av-
erage number of line search iterations per quasi-Newton iteration
is only 1.07. Even though in most cases the full step (α = 1) suc-
ceeds, the Armijo safeguard is essential for stability; if we drop it,
the simulation can quickly explode, as shown in Figure 3.

4.2 Accelerating convergence

The connection between Projective Dynamics and quasi-Newton
methods allows us to take advantage of further mathe-
matical optimization techniques. In this section, we dis-
cuss how to accelerate convergence of our method using L-
BFGS (Limited-memory BFGS). The BFGS algorithm (Broyden-
Fletcher-Goldfarb-Shanno) is one of the most popular general pur-
pose quasi-Newton methods; its key idea is to approximate the Hes-
sian using curvature information calculated from previous iterates,
i.e., x1, . . . ,xk−1. The L-BFGS modification means that we will
use only the most recent m iterates, i.e., xk−m, . . . ,xk−1; the ra-
tionale being that too distant iterates are less relevant in estimating
the Hessian at xk.

In Alg. 1, the matrix M/h2 + L in line 4 can be interpreted as
our initial approximation of the Hessian. This matrix is constant
which on one hand enables its pre-factorization, but on the other
hand, M/h2 + L may be far from the Hessian ∇2g(xk), which is
the reason for slower convergence compared to Newton’s method
[Bouaziz et al. 2014]. L-BFGS allows us to develop a more accu-
rate, state-dependent Hessian approximation, leading to faster con-
vergence without too much computational overhead (in our experi-
ments the overhead is typically less than 1% of the simulation time,
see Table I). The key to fast iterations of L-BFGS is the fact that
the progressively updated approximate Hessian Ak is not stored
explicitly, which would require us to solve a new linear system
Akd(xk) = −∇g(xk) each iteration, implying high computa-
tional costs. Instead, L-BFGS implicitly represents the inverse of
Ak, i.e., linear operator Bk such that the desired descent direc-
tion can be computed simply as d(xk) = −Bk∇g(xk). The linear
operator Bk is not represented using a matrix (which would have
been dense), but instead as a sequence of dot products, known as
the L-BFGS two-loop recursion, see Alg. 2. For a more detailed
discussion of BFGS and its variants we refer to Chapters 6 and 7 of
[Nocedal and Wright 2006].

Alg. 2 requires us to provide an initial Hessian approximation
A0, ideally such that the linear system A0r = q can be solved
efficiently (line 7). In our method, we use M/h2 + L as the ini-
tial Hessian approximation. At first, it may seem the initialization
of the Hessian is perhaps not too important and the L-BFGS iter-
ations quickly approach the exact Hessian. However, this intuition
is not true. In Section 5 we experiment with different possible ini-
tializations of the Hessian and show that our particular choice of
M/h2 + L outperforms alternatives such as Hessian of the rest-
pose and many others. In short, the reason is that the L-BFGS up-
dates use only a few gradient samples, which provide only a limited
amount of information about the exact Hessian. The appeal of the
L-BFGS strategy is that it is very fast – the compute cost of the two
for-loops in Alg. 2 is negligible compared to the cost of solving the

Algorithm 2: Descent direction computation with L-BFGS

1 q := −∇g(xk)
2 for i = k − 1, . . . , k −m do
3 si := xi+1 − xi; ti := ∇g(xi+1)−∇g(xi);

ρi := tr(tTi si)
4 ζi := tr(sTi q)/ρi
5 q := q− ζiti
6 end
7 r := A−10 q // A0 is initial Hessian approximation
8 for i = k −m, . . . , k − 1 do
9 η := tr(tTi r)/ρi

10 r := r + si(ζi − η)
11 end
12 d(xk) := r // resulting descent direction

linear system in line 7 with our choice of A0 = M/h2 + L. This
is true even for high values of m. In other words, the linear solve
using M/h2+L (line 7) is still doing the “heavy lifting”, while the
L-BFGS updates provide additional convergence boost at the cost
of minimal computational overhead.

Upgrading our method with L-BFGS is simple: we only need to
replace line 4 in Alg. 1 with a call of Alg. 2. Note that for m = 0,
Alg. 2 returns exactly the same descent direction as before, i.e.,
d(xk) := −(M/h2 + L)−1∇g(xk). What is the optimal m, i.e.,
the size of the history window? Too small m will not allow us to
unlock the full potential of L-BFGS. The main problem with too
high m is not the higher computational cost of the two loops in
Alg. 2, but the fact that too distant iterates (such as xk−100) may
contain information irrelevant for the Hessian at xk and the result
can be even worse than with a shorter window. We found that m =
5 is typically a good value in our experiments.

The recently proposed Chebyshev Semi-Iterative methods for
Projective Dynamics [Wang 2015] can also be interpreted as a spe-
cial type of a quasi-Newton method which utilizes two previous it-
erates, i.e., corresponding to m = 2. Indeed, in our experiments L-
BFGS with m = 2 exhibits similar convergence rate as the Cheby-
shev method, see Figure 7 and further discussion in Section 5. Fi-
nally, we note that even though the Wolfe conditions are the rec-
ommended line search strategy for L-BFGS, we did not observe
any significant convergence benefit compared to our backtracking
strategy. However, evaluating the Wolfe conditions increases the
computational cost per iteration and therefore, we continue to rely
on the backtracking strategy as described in Alg. 1.
4.3 Collisions
A classical approach to enforcing non-penetration constraints be-
tween deformable solids is to 1) detect collisions and 2) resolve
them using temporarily instantiated repulsion springs, which bring
the volume of undesired overlaps to zero [McAdams et al. 2011;
Harmon et al. 2011]. However, in Projective Dynamics the pri-
mary emphasis is on computational efficiency and therefore only
simplified collision resolution strategies have been proposed by
Bouaziz et al. [2014]. Specifically, Projective Dynamics offers
two possible strategies. The first strategy is a two-phase method,
where collisions are resolved in a separate post-processing step
using projections, similar to Position Based Dynamics. The same
strategy was employed also by Liu et al. [2013]. The drawback
of this approach is the fact that collision projections are oblivi-
ous to elasticity and inertia of the simulated objects. The second
approach used in Projective Dynamics is more physically realis-
tic, but introduces additional computational overhead. Specifically,

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

8 • T. Liu, S. Bouaziz and L. Kavan

temporarily-instantiated repulsion springs are added to the total en-
ergy. This leads to physically realistic results, but the drawback is
that the matrix M/h2 + L needs to be re-factorized whenever the
set of repulsion springs is updated – typically, at the beginning of
each frame.

Our quasi-Newton interpretation invites a new approach to col-
lision response which is physically realistic, but avoids expensive
re-factorizations. Specifically, for each inter-penetration found by
collision detection, we introduce an energy term Ecollision(x) =
((Sx− t)Tn)2, where S is a selector matrix of the collided vertex,
t is its projection on the surface and n is the surface normal. This
constraint pushes the collided vertex to the tangent plane. It is im-
portant to add this term to our total energyE(x) only if the vertex is
in collision or contact. Whenever the relative velocity between the
vertex and the collider indicates separation, the Ecollision(x) term
is discarded (otherwise it would correspond to unrealistic “glue”
forces). This is done once at the beginning of each iteration (just
before line 3 in Alg. 1). The rest of our algorithm (lines 6-10 of
Alg. 1) is unaffected by these updates, i.e., the unilateral nature of
the collision constraints is handled correctly without any further
processing.

The key idea of our approach is to leverage the quasi-Newton ap-
proximation for collision processing. In particular, we account for
the Ecollision(x) terms when evaluating the energy and its gradients,
but we ignore their contributions to the M/h2 + L matrix. This
means that we form a somewhat more aggressive approximation of
the Hessian, with the benefit that the system matrix will never need
to be re-factorized. The line search process (lines 6-10 in Alg. 1)
guarantees that energy will decrease in spite of this more aggressive
approximation. The only trade-off we observed in our experiments
is that the number of line search iterations may increase, which is
a small cost to pay for avoiding re-factorizations. We observed that
even in challenging collision scenarios, such as when squeezing a
Big Bunny through a torus, the approach behaves robustly and suc-
cessfully resolves all collisions, see Figure 4.

Fig. 4. Our method is capable of simulating complex collision scenarios,
such as squeezing the Big Bunny through a torus. The Big Bunny uses coro-
tated elasticity with µ = 5 and λ = 200.

4.4 Anisotropy
Our numerical methods, including the L-BFGS acceleration, can
be directly applied also to anisotropic material models. We verified
this on an elastic cube model with corotated base material (µ = 10,
λ = 100, referring to the notation of Sifakis and Barbič [2012])
enhanced with additional anisotropic stiffness term κ

2
(‖Fd‖−1)2,

where F is the deformation gradient and d is the (rest-pose) di-
rection of anisotropy. This corresponds to the directional reinforce-
ment of the material which is common, e.g., in biological soft tis-
sues containing collagenous fibers. The result of our method with
κ = 50 can be seen in Figure 5.

Isotropic Material Anisotropic Material

Fig. 5. Dropping an elastic cube on the ground. Left: deformation using
isotropic elasticity (linear corotated model). Right: the result after adding
anisotropic stiffness.

Neo-Hookean

Spline-based Material A

Spline-based Material B

0.1 1

-0.5

0

0.5

1

10

x107
0.1 1

-0.5

0

0.5

1

10

x106
0.1 1

-0.5

0

0.5

1

10

x106

Fig. 6. Elastic sphere with spline-based materials [Xu et al. 2015], sim-
ulated using our method. Spline-based material A is a modified Neo-
Hookean material that resists compression more; material B is a modified
Neo-Hookean material that resists tension more. The strain-stress curves
are shown on the left.

5. RESULTS

Our method supports standard elastic materials, such as corotated
linear elasticity, St. Venant-Kirchhoff and the Neo-Hookean model,
see Figure 1. None of these materials is supported by Projective Dy-
namics (note that Projective Dynamics supports a special sub-class
of corotated linear materials, specifically, ones with λ = 0). Our
method also supports the recently introduced spline-based materi-
als proposed by Xu et al. [2015], as shown in Figure 1 and Figure 6.

Table I reports our testing scenarios and compares the run time
of our method with Newton’s method, both executed on an Intel
i7-4910MQ CPU at 2.90GHz. All scenarios are produced with a
fixed timestep of 1/30 seconds. Because Newton’s method is not
guaranteed to work with indefinite Hessians, we employ the stan-
dard definiteness fix [Teran et al. 2005], i.e., we project the Hes-
sian of each element to its closest positive definite component. We
found this method works better than other definiteness fixes, such
as adding a multiple of the identity matrix [Martin et al. 2011],
which affects the entire simulation even if there are just a few prob-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 9

Table I. Performance of all Testing Senarios

model #ver. #ele. material model
our method (10 iterations) Newton (1 iteration)

linesearch L-BFGS per-frame relative per-frame relative
iterations overhead time error time error

Thin sheet 660 1932 Polynomial 10.8 0.026 ms 4.4 ms 2.7× 10−8 184 ms 8.8× 10−4

Sphere 889 1821 Spline-based A 24.5† 0.155 ms 21.2 ms 2.7× 10−7 188 ms 6.9× 10−4

Sphere 889 1821 Spline-based B 21.8 0.156 ms 19.7 ms 6.9× 10−6 187 ms 2.5× 10−4

Shaking bar 574 1647 Corotated 10.1 0.193 ms 7.2 ms 1.6× 10−4 171 ms 4.4× 10−3

Ditto 1454 4140 Neo-Hookean 11.7 0.203 ms 17.8 ms 3.0× 10−5 305 ms 1.6× 10−3

Hippo 2387 8406 Corotated 11.9 0.555 ms 40.6 ms 2.2× 10−3 640 ms 3.7× 10−2

Twisting bar 3472 10441 Neo-Hookean 10.6 0.945 ms 45.6 ms 9.4× 10−5 681 ms 7.9× 10−3

Cloth 6561 32160 Mass-Springs 10.0 1.20 ms 42.3 ms 9.3× 10−4 798 ms 1.2× 10−2

Big Bunny 6308 26096 Corotated 49.2‡ 2.19 ms 623 ms 9.8× 10−2 2700 ms 2.8× 10−1

Squirrel 8395 23782 Polynomial 10.7 1.41 ms 153 ms 8.3× 10−8 2400 ms 9.1× 10−6

Squirrel 33666 125677 Polynomial 10.5 6.38 ms 706 ms 1.5× 10−5 15800 ms 5.4× 10−5

In all examples, we execute 10 iterations of our method per frame, accelerated with L-BFGS with history window m = 5. Newton’s method uses 1 iteration
per frame. The “linesearch iterations” reports the average number of line search iterations per frame. The “L-BFGS overhead” is the runtime overhead of L-
BFGS, i.e., timing of Alg. 2 without line 7 (m = 5). The reported per-frame time for our method accounts for all 10 iterations. One iteration of our method
is approximately 100 times faster than one iteration of Newton’s method. We use 10 iterations of our method which reduce the error more than one iteration
of Newton’s method, while being about 10 times faster. †The higher number of line search iterations is due to the high nonlinearity of the spline-based mate-
rials and large deformations of the sphere. ‡In this case, the higher number of line search iterations is caused by nonlinearities due to collisions (Section 4.3).

time (seconds)
0 0.05 0.1 0.15 0.2 0.25 0.3

re
la

tiv
e

er
ro

r

10-6

10-4

10-2

100

number of iterations
0 10 20 30 40 50

10-6

10-4

10-2

100

Our method

without L-BFGS

Our method with

L-BFGS (m=2)

Our method

with L-BFGS (m=5)

Chebyshev semi-iterative

method

Chebyshev with

first 10 iteration disabled

Newton's method

Fig. 7. Convergence of our method with different L-BFGS history settings, compared to Chebyshev Semi-Iterative method and Newton’s method (baseline).
The model is “Twisting bar” with Neo-Hookean elasticity, which is a representative example of large deformations with non-linear material model. For
consistency, we use the exact same model in our following experiments.

lematic elements. The approximately 100 times faster run-time of
one iteration of our method compared to one iteration of Newton’s
method is due to the following facts: 1) we use pre-computed sparse
Cholesky factorization, because our matrix M/h2 +L is constant,
2) the size of our matrix is n × n, whereas the Hessian used in
Newton’s method is a 3n × 3n matrix, i.e., the x, y, z coordinates
are no longer decoupled, 3) the computation of SVD derivatives,
necessary to evaluate the Hessians of materials based on principal
stretches [Xu et al. 2015], is expensive. Note that our method is also
simpler to implement, as no SVD derivatives or definiteness fixes
are necessary.

Comparison to Chebyshev Semi-Iterative method. We com-
pared the convergence of our method with various lengths of the L-
BFGS window to the recently introduced Chebyshev Semi-Iterative
method [Wang 2015]. We also plot results obtained with Newton’s
method as a baseline, see Figure 7.

Even though the Chebyshev method was originally proposed
only for Projective Dynamics energies, our generalization to ar-

bitrary materials is compatible with the Chebyshev Semi-Iterative
acceleration, see Alg. 3. The Alg. 3 computes a descent direction
which can be used in line 4 of Alg. 1. As discussed by Wang [2015],
the Chebyshev acceleration should be disabled during the first S
iterations, where the recommended value is S = 10. Another pa-
rameter which is essential for the Chebyshev method is an estimate
of spectral radius ρ, which is calculated from training simulations
[Wang 2015]. This parameter must be estimated carefully, because
under-estimated ρ can lead to the Chebyshev method producing
ascent directions (as opposed to descent directions). Without line
search, the ascent directions manifest themselves as oscillations
[Wang 2015]. For the purpose of comparisons, we implemented the
Chebyshev method with direct solver which is the fastest method
on the CPU [Wang 2015].

We compare the convergence of all methods using relative error,
defined as:

g(xk)− g(x∗)

g(x0)− g(x∗)
, (12)

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

10 • T. Liu, S. Bouaziz and L. Kavan

time
0 0.5 1 1.5

re
la

tiv
e

er
ro

r

10-6

10-4

10-2

100

number of iterations
0 10 20 30 40 50

10-6

10-4

10-2

100

Our Hessian

approximation

Scaled

Identity

Rest-pose

Hessian

Stiffness-warped

rest-pose Hessian

Hessian evaluated

once every frame

Newton's method

(Hessian evaluated

every iteration)

Fig. 8. Convergence comparison of L-BFGS methods (all using m = 5) initialized with different Hessian approximations, along with Newton’s method
(baseline). The model is “Twisting bar” with Neo-Hookean elasticity.

Algorithm 3: Descent direction computation using Chebyshev
Semi-Iterative Method [Wang 2015]

1 // S . . . Chebyshev disabled for the first S iterates, default S =
10

2 // ρ . . . approximated spectral radius
3 q := −(M/h2 + L)−1∇g(xk)
4 x̂k+1 := xk + q
5 if k < S then ωk+1 := 1;
6 if k = S then ωk+1 := 2/(2− ρ2);
7 if k > S then ωk+1 := 4/(4− ρ2ωk);
8 d(xk) := ωk+1(x̂k+1 − xk−1) + xk−1 − xk

where x0 is the initial guess (we use x0 := y for all methods), xk
is the k-th iterate, and x∗ is the exact solution computed using New-
ton’s method (iterated until convergence). The decrease of relative
error for one example frame is shown in Figure 7, where all meth-
ods are using the backtracking line search outlined in Alg. 1. As
expected, descent directions computed using Newton’s method are
the most effective ones, as can be seen in Figure 7 (right). However,
each iteration of Newton’s method is computationally expensive,
and therefore other methods can realize faster error reduction with
respect to computational time, as shown in Figure 7 (left). All of
the remaining methods are based on the constant Hessian approx-
imation M/h2 + L which leads to much faster convergence. Out
of these methods, classical Projective Dynamics converges slowest.
The Chebyshev Semi-Iterative method improves the convergence;
we also confirmed that disabling the Chebyshev method during the
first 10 iterations indeed helps, as recommended by Wang [2015].
Our method aided with L-BFGS improves convergence even fur-
ther. Already with m = 2 (where m is the size of the history win-
dow), we obtain slightly faster convergence than with the Cheby-
shev method. One reason is that it is not necessary to disable L-
BFGS in the first several iterates, because L-BFGS is effective as
soon as the previous iterates become available. Also, we do not
have to estimate the spectral radius which is required by the Cheby-
shev method. With L-BFGS, we can also increase the history win-
dow, e.g., to m = 5, obtaining even more rapid convergence.

L-BFGS with different initial Hessian estimates. Our method
can be interpreted as providing a particularly good initial estimate

of the Hessian for L-BFGS. Therefore, it is important to compare to
other possible Hessian initializations. In a general setting, Nocedal
and Wright [2006] recommend to bootstrap L-BFGS using a scaled
identity matrix:

A0 :=
tr(sTk−1yk−1)

tr(yT
k−1yk−1)

I. (13)

We experimented with this approach, but we found that our choice
A0 := M/h2 +L leads to much faster convergence, trumping the
computational overhead associated with solving the pre-factorized
system A0r = q (see Figure 8, blue graph).

Another possibility would be to set A0 equal to the rest-pose
Hessian (formally, A0 := M/h2 + ∇2g(x0)), which is also a
constant matrix which can be pre-factorized. As shown in Figure 8
(yellow graph), this is a slightly better approximation than scaled
identity, but still not very effective. This is because the actual Hes-
sian depends on world-space rotations of the model, deviating sig-
nificantly from the rest-pose Hessian. Figure 9 shows an example
illustrating the drawbacks of the rest-pose Hessian. Configuration
1 shows an elastic cube released from a slightly stretched state.
In this configuration, setting A0 to the rest-pose Hessian results
in faster error reduction than our method (red graph), because the
initial configuration is close to the rest pose and therefore the ex-
act Hessian is close to the rest-pose Hessian. Unfortunately, when
we rotate the initial configuration by 90 degrees (Configuration 2),
the rest-pose Hessian becomes ineffective, as it is far away from the
exact Hessian (yellow graph). Our Hessian approximation is invari-
ant to rigid body transformations and therefore leads to the same
error reduction in both Configurations 1 and 2 (blue graph). To fur-
ther analyze this effect, we also computed the condition number of
A−1∇2g(x) where A is an approximate Hessian. The conditions
numbers reported in Table 8 confirm this observation.

Another interpretation of our Hessian approximation can be de-
rived from the energy density function of the Neo-Hookean mate-
rial [Sifakis and Barbič 2012]:

Ψ(F) =
µ

2
(tr(FTF)− 3)− µ log(det(F)) +

λ

2
log2(det(F)),

(14)
where F is the deformation gradient and µ and λ are Lamé co-
efficients. In this case, our Hessian approximation corresponds to
the first term, i.e., tr(FTF), which is indeed rotation invariant. The

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 11

rest-pose Hessian is not rotation invariant and thus produces worse
approximation of the exact Hessian as shown in Figure 9.

Configuration 1 Configuration 2

0 5 10 15 20
number of iterations

10-6

10-4

10-2

100

re
la

tiv
e

er
ro

r

Our Hessian approximation, config 1 and 2
Rest-pose Hessian, config 1
Rest-pose Hessian, config 2

Fig. 9. Convergence comparison of L-BFGS methods with with different
configurations. Configuration 1 is the simulation of an elastic cube with
Neo-Hookean elasiticy, released from a horizontally stretched pose, close
to the rest pose. Configuration 2 is the same configuration rotated by 90 de-
grees. Using the rest-pose Hessian as initial Hessian approximation does not
work well in Configuration 2. Our method is rotation invariant and therefore
performs equally well in both configurations.

Table II. Condition number of A−1∇2g(x) in Figure 9
A Rest-pose Hessian Our Hessian approximation
configuration 1 2 1 2
condition number 2.45 45.5 9.94 9.94

Condition number of A−1∇2g(x) in Configurations 1 and 2 as in Fig-
ure 9, where ∇2g(x) is the exact Hessian matrix evaluated at the begin-
ning of the frame and A is an approximate Hessian, computed 1) at the rest
pose and 2) using our method.

This issue of the rest-pose Hessian was observed by Müller et
al. [2002], who proposed per-vertex stiffness warping as a possi-
ble remedy. Per-vertex stiffness warping still allows us to leverage
pre-factorization of the rest-pose Hessian and results in better con-
vergence than pure rest-pose Hessian, see Figure 8 (purple graph).
However, per-vertex stiffness warping may introduce ghosts forces,
because stiffness warping uses different rotation matrices for each
vertex, which means that internal forces in one element no longer
have to sum to zero. The ghost forces disappear in a fully converged
solution, however, this would require a prohibitively high number
of iterations.

Yet another possibility is to completely re-evaluate the Hessian
at the beginning of each frame. This requires re-factorization, how-
ever, the remaining 10 (or so) iterations can reuse the factorization,
relying only on L-BFGS updates. When measuring convergence
with respect to the number of iterations, this approach is very ef-
fective, as shown in Figure 8 (right, green graph). However, the cost
of the initial Hessian factorization is significant, as can be seen in

Figure 8 (left, green graph). Our method uses the same Hessian fac-
torization for all frames, avoiding the per-frame factorization costs,
while featuring excellent convergence properties, see Figure 8 (blue
graph).

[Hecht et al. 2012]

Our Method

Frame 28

Frame 28

Frame 35

Frame 35

Frame 39

Frame 39

Fig. 10. Simulation of a bar with corotated elasticity, constrained in the
middle and rapidly shaken. The method of Hecht et al. [2012] with full Hes-
sian updates every other frame explodes due to large ghost forces (top). Our
method does not introduce any ghost forces and remains stable (bottom).

The overhead of per-frame Hessian factorizations can be mit-
igated by carefully scheduled Hessian updates. In particular, the
Hessian can be reused for multiple subsequent frames if the state is
not changing too much [Deuflhard 2011]. Assuming the corotated
elastic model, Hecht et al [2012] push this idea even further by
proposing a warp-cancelling form of the Hessian which allows not
only for temporal schedule, but also for spatially localized updates.
Specifically, a nested dissection tree allows for recomputing only
parts of the mesh, which is particularly advantageous in situations
where only a small part of the object is undergoing large deforma-
tions. However, the updates are still costly, and the frequency of the
updates depends on the simulation. Similarly to per-vertex stiffness
warping, insufficiently frequent updates may produce ghost forces
and consequent instabilities. This can be a problem when simulat-
ing quickly moving elastic objects. To illustrate this, in Figure 10
we show a simulation of shaking an elastic bar. Even if we sched-
ule the Hessian updates every other frame and recompute the entire
domain, this method still generates too large ghost forces and be-
comes unstable. In contrast, our method remains stable and does
not require any run-time Hessian updates.

strain: σ
-1 0 1 2 3

st
re

ss
:a
′ (
σ
)

-40

-20

0

20

40

polynomial material
Projective Dynamics material

Fig. 11. The strain-stress curve of a polynomial material can be approxi-
mated piece-wise linearly with two Projective Dynamics constraints.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

12 • T. Liu, S. Bouaziz and L. Kavan

Comparison to Projective Dynamics. One possible alternative to
our method would be to apply regular Projective Dynamics with ad-
ditional strain-limiting constraints [Bouaziz et al. 2014], enabling
us to construct piece-wise linear approximations of the strain-stress
curves of more general materials. We tried to use this approach to
approximate the polynomial material (a(x) = µ(x − 1)4, b(x) =
0, c(x) = 0) discussed in Section 4.1, see Figure 11. Even though
we obtain similar overall behavior, there are two types of arti-
facts associated with this approximation. First, the strain-limiting
constraints introduce damping when they are not activated. This
is because the projection terms still exist in our constant matrix
M/h2 + L; if the strain-limiting is not activated, the deformation
gradients project to their current values, which produces the unde-
sired damping. The second problem is due to the non-smooth na-
ture of the piece-wise linear approximation, i.e., the stiffness of the
simulated object is abruptly changed when the strain-limiting con-
straints become activated. As shown in the accompanying video,
our method avoids both of these issues.

Our Method with L-BFGS
(m=5)

Projective Dynamics

Fig. 12. Mass-spring system simulation using our method with L-BFGS
(left) and without, i.e., using pure Projective Dynamics (right). The L-BFGS
acceleration results in more realistic wrinkles.

The L-BFGS acceleration benefits also simulations which use
only Projective Dynamics materials (Eq. 1). The most elementary
example of these materials are mass-spring systems. In Figure 12,
we can see that the L-BFGS acceleration applied to a mass-spring
system simulation results in more realistic wrinkles with negligible
computational overhead, see Table I.

Choice of L-BFGS history window size. In order to find the best
history window size (m), we experimented with different values of
m, see Figure 13. Too large m takes into account too distant it-
erates which can lead to worse approximation of the Hessian. In
Figure 13, we see the optimal value is m = 5, which is also our
recommended default setting. However, it is comforting that the
algorithm is not particularly sensitive to the setting of m – even
large values such as m = 100 produce only slightly worse conver-
gence. We also observed that in scenarios with frequent collisions,
the history becomes less useful. In these cases, reducing the win-
dow size according to the number of newly instantiated collision
constraints may be beneficial. In Figure 7 we also notice that the
convergence rate of the Chebyshev method is similar to our method
with L-BFGS using m = 2. We believe this is not a coincidence,
because the Chebyshev method uses two previous iterates, just like
L-BFGS with m = 2.
Line search conditions. The purpose of a line search algorithm
is to ensure sufficient decrease in a given descent direction. Line
4 in Alg. 1 is known as the the Armijo condition. This condition

time (seconds)
0 0.05 0.1 0.15 0.2

re
la

tiv
e

er
ro

r

10-6

10-4

10-2

100 Convergence Rate

m=0
m=2
m=5
m=10
m=100

Fig. 13. Comparison of L-BFGS convergence rate with different history
window sizes (m).

prevents overshooting, but it is not enough to ensure that the algo-
rithm keeps making reasonable progress, because it is satisfied for
all sufficiently small values of α. In order to rule out unacceptably
small steps, the popular Wolfe conditions use an additional require-
ment: tr((∇g(x+αd(x)))Td(x)) ≥ γ2 tr((∇g(x))Td(x)), where
γ2 ∈ (γ, 1), and γ is the constant in line 4 of Alg. 1. This require-
ment is known as a “curvature condition”. Intuitively, this condition
requires the gradient at the new iterate to be sufficiently “flat”, i.e.,
close to a critical point.

0 5 10 15 20 25
iteration

0

0.5

1

1.5

st
ep

 s
iz

e
(

)

Armijo Condition
Wolfe Conditions

α

Fig. 14. Step size of each quasi-Newton iteration in the twisting bar exam-
ple. The blue circles are step sizes chosen by backtracking line search with
the Armijo condition. The red crosses are step sizes chosen by line search
satisfying the Wolfe conditions.

We implemented two algorithms, 1) backtracking line search
starting with α = 1 and using only the Armijo condition, and 2)
line search using both of the Wolfe conditions (according to Alg.
3.5 and 3.6 in [Nocedal and Wright 2006]). The line search step
sizes for one example frame are compared in Figure 14. With de-
scent directions computed with our method, we observed that 1 is
an excellent initial guess which usually satisfies both of the Wolfe
conditions. In these cases, both algorithms return α = 1. In some
iterations, e.g., in iteration 20 in Figure 14, the curvature condi-
tion enforces larger step than the backtracking line search. How-
ever, at the beginning of iteration 20, the relative error has been
already reduced to 10−7, and the different step size does not have
significant effect on the result. We note the Wolfe conditions are
usually recommended when using L-BFGS methods [Nocedal and
Wright 2006] initialized with scaled identity matrix, but this can be
a poor initial guess. Our Hessian approximation provides better ini-
tial guess and therefore careful line search becomes less critical. In

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 13

practice, we observed that both line search approaches lead to com-
parable error reduction when using our Hessian approximation, and
therefore we recommend the computationally less expensive back-
tracking line search strategy.
Choice of stiffness parameters. As discussed in Section 4.1, we
use Eq. 11 to define our stiffness parameter k as the slope of the best
linear approximation of Eq. 10 at ∈ [xstart, xend]. What is the best
[xstart, xend] interval to use? In the limit, with [xstart, xend] →
[1, 1], our k would converge to the second derivative. However,
a finite interval [xstart, xend] guarantees that our k is meaning-
ful even for materials such as the polynomial material a(x) =
µ(x − 1)4, b(x) = 0, c(x) = 0; in this case, we obtain a k which
depends linearly on µ. We argue the convergence of our algorithm
is not very sensitive to a particular choice of the [xstart, xend] in-
terval. In Figure 15, we show convergence graphs of a twisting bar
with Neo-Hookean material using different intervals to compute the
stiffness parameter k. Although Neo-Hookean material is highly
non-linear, the convergence rates for different interval choices are
quite similar. Therefore, we decided not to investigate more sophis-
ticated strategies and we set xstart = 0.5, xend = 1.5 in all of our
simulations.

time (seconds)
0 0.05 0.1 0.15

re
la

tiv
e

er
ro

r

10-6

10-4

10-2

100 Convergence Rate

[0.9, 1.1]
[0.7, 1.3]
[0.5, 1.5]
[0.3, 1.7]

Fig. 15. The convergence rate for different stiffness parameters chosen
from different [xstart, xend] intervals.

Comparison with iterative solvers. Sparse iterative solvers do not
require expensive factorizations and are therefore attractive in in-
teractive applications. A particularly popular iterative solver is the
Conjugate Gradient method (CG) [Hestenes and Stiefel 1952]. An
additional advantage is that CG can be implemented in a matrix-
free fashion, i.e., without explicitly forming the sparse system
matrix. Gast et al. [2015] further accelerate the CG solver used
in Newton’s method by proposing a CG-friendly definiteness fix.
Specifically, the CG iterations are terminated whenever the maxi-
mum number of iterations is reached or indefiniteness of the Hes-
sian matrix is detected.

While iterative methods can be the only possible choice in high-
resolution simulations (e.g., in scientific computing), in real-time
simulation scales, sparse direct solvers with pre-computed factor-
ization are hard to beat, as we show in Figure 16. Specifically, we
test Newton’s method with linear systems solved using CG with 5
and 15 iterations, using Jacobi preconditioner. Even with 15 CG it-
erations, the accuracy is still not the same as with the direct solver
while the computational cost becomes high. If we use only five CG
iterations the linear system solving time improves, but the conver-
gence rate suffers because the descent directions are not sufficiently
effective. The method of Gast et al. [2015] initially outperforms

Newton with CG, however, the convergence slows down in subse-
quent iterations. We also tried to apply CG to our method, in lieu
of the direct solver. With 15 CG iterations the convergence is com-
petitive, however, the CG solver is slower.

A carefully chosen preconditioner usually helps the convergence
of a CG solver. Figure 17 shows an example of the effect of differ-
ent preconditioners. The green graph is L-BFGS initialized with the
Hessian matrix evaluated at the beginning of every frame, solved
by a direct solver. This Hessian approximation provides a very nice
initial guess for L-BFGS, but its evaluation and factorization is too
expensive to execute once per frame. The two yellow graphs use
the same Hessian approximation as the green graph, but are solved
using preconditioned conjugate gradients (PCG) with 5 and 15 it-
erations, using incomplete Cholesky factorization of the rest-pose
Hessian as a preconditioner. Compared with the green graph, we
can see that the PCG solver is more efficient especially at the first
several iterations, since it does not require the expensive factor-
ization of the Hessian matrix. However, the convergence starts to
slow down at later iterates. The two purple graphs are using the
exact same configuration as the yellow graphs, but use incomplete
Cholesky factorization of our Hessian approximation, M/h2 + L,
as a preconditioner. We can see that our Hessian approximation is
a better preconditioner than the rest-pose Hessian.
Robustness. We demonstrate that our proposed extensions to more
general materials and the L-BFGS solver upgrade do not com-
promise simulation robustness. In Figure 18, we show an elastic
hippo which recovers from an extreme (randomized) deformation
with many inverted elements. Specifically, the hippo model uses L-
BFGS with m = 5 and corotated linear elasticity with µ = 20 and
λ = 100 (note that Projective Dynamics supports only corotated
materials with λ = 0).

6. LIMITATIONS AND FUTURE WORK

Our method is currently limited only to hyperelastic materials sat-
isfying the Valanis-Landel assumption. Even though this assump-
tion covers many practical models, including the recently proposed
spline-based materials [Xu et al. 2015], it would be interesting to
study the further generalization of our method. Perhaps even more
interesting would be to remove the assumption of hyperelasticity.
Can we develop fast algorithms for simulating non-hyperelastic
materials, including the effects such as relaxation, creep, and hys-
teresis [Bargteil et al. 2007]? Our method assumes linear FEM,
it would be a great topic to find a good Hessian approximation
to nonlinear shape functions, such as Quadratic Bézier Finite El-
ements [Bargteil and Cohen 2014]. Inspired by the recent work
of Wang [2015], we would like to explore GPU implementations
of physics-based simulations. Our current method is derived from
the Implicit Euler time integration method and therefore inherits
its artificial damping drawbacks. We experimented with Implicit
Midpoint – a symplectic integrator which does not suffer from this
problem. However, we found that Implicit Midpoint is much less
stable. In the future we would like to explore fast numerical solvers
for symplectic yet stable integration methods. Finally, we plan to
investigate specific physics-based applications which require both
high accuracy and speed, such as interactive surgery simulation.

Collision detection and response is a challenging problem. The
classical model of repulsion springs [McAdams et al. 2011] which
we adopted in our implementation is analogous to an active set
method that adds / removes constraints during the iterations of the
algorithm. It is possible that this approach will end up cycling,
however, we have never observed this in practice. One possible
workaround is to limit the number of iterations, possibly leaving

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

14 • T. Liu, S. Bouaziz and L. Kavan

time (seconds)
0 1 2 3 4 5

re
la

tiv
e

er
ro

r

10-6

10-4

10-2

100

number of iterations
0 10 20 30 40 50

10-6

10-4

10-2

100

Our method with

prefactorized direct solver

Our method with

5 CG iterations

Our method with

15 CG iterations

Newton's method

with direct solver

Newton's method

with 5 CG iterations

Newton's method

with 15 CG iterations

[Gast et al. 2015] with

5 CG iterations

[Gast et al. 2015] with

15 CG iterations

Fig. 16. Convergence comparison of various methods using sparse direct solvers and conjugate gradients. The model is “Twisting bar” with Neo-Hookean
elasticity.

0 0.5 1 1.5
time (seconds)

10-6

10-4

10-2

100

re
la

tiv
e

er
ro

r

(a.)
(b.)
(c.)
(d.)
(e.)
(f.)

Fig. 17. Comparison to preconditioned conjugate gradients (PCG) with
different preconditioners, tested on the “Twisting bar” example with Neo-
Hookean elasticity. Experiment (a.) is L-BFGS using our Hessian approxi-
mation as the initial guess. The rest of the experiments (b. - f.) are L-BFGS
using the Hessian matrix evaluated at the beginning of each frame solved
by the following options: (b.) direct solver; (c.) 5 PCG iterations with in-
complete Cholesky (ichol) of the rest-pose Hessian; (d.) 15 PCG iterations
with ichol of the rest-pose Hessian; (e.) 5 PCG iterations with ichol of our
Hessian approximation; (f.) 15 PCG iterations with ichol of our Hessian
approximation;

Fig. 18. Our method is robust despite extreme initial conditions: a ran-
domly initialized hippo returns back to its rest pose. This example does not
contain any explicit inversion handling constraints, only the standard penal-
ization of inverted elements due to corotated elasticity.

some collision constraints unresolved. In collision-dominant simu-
lations, more advanced algorithms may be necessary. Another lim-
itation is that in our current implementation, we treat collisions as
soft constraints with relatively stronger stiffness compared to the

elastic models. One possible way to resolve hard collision con-
straints is to use Lagrangian multipliers, by solving the KKT sys-
tem using its Schur complement [Ichim et al. 2016]. However, in
cases with many collision constraints, the Schur complement be-
comes impractically large. Another possible approach to treating
hard collision constraints is the Augmented Lagrangian method
[Deng et al. 2013]. Fast and robust collision resolution in challeng-
ing scenarios is a problem which deserves significant attention in
future work.

7. CONCLUSIONS

We have presented a method for fast physics-based simulation of
a large class of hyperelastic materials. The key to our approach is
the insight that Projective Dynamics [Bouaziz et al. 2014] can be
re-formulated as a quasi-Newton method. Aided with line search,
we obtain a robust simulator supporting many practical material
models. Our quasi-Newton formulation also allows us to further
accelerate convergence by combining our method with L-BFGS.
Even though L-BFGS is sensitive to initial Hessian approximation,
our method suggests a particularly effective Hessian initialization
which yields fast convergence. Most of our experiments use ten it-
erations of our method which is typically more accurate than one
iteration of Newton’s method, while being about ten times faster
and easier to implement. Traditionally, real-time physics is consid-
ered to be approximate but fast, while off-line physics is accurate
but slow. We hope that our method will help to blur the boundaries
between real-time and off-line physics-based animation.

Acknowledgements

We thank Jernej Barbič, Erik Brunvand, Elaine Cohen, Sebastian
Martin, James O’Brien, Mark Pauly, Peter Shirley, Cem Yuksel,
and Hongyi Xu for many inspiring discussions. We also thank Petr
Kadleček for help with rendering, Alec Jacobson for providing the
mesh generating tool, Dimitar Dinev for proofreading and Hannah
Swan for narrating the accompanying video. This work was sup-
ported by NSF awards IIS-1622360 and IIS-1350330.

REFERENCES

AN, S. S., KIM, T., AND JAMES, D. L. 2008. Optimizing cubature for
efficient integration of subspace deformations. ACM Trans. Graph. 27,
165:1–165:10.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 15

BARBIČ, J. AND JAMES, D. L. 2005. Real-time subspace integration for st.
venant-kirchhoff deformable models. ACM Trans. Graph. 24, 982–990.

BARGTEIL, A. W. AND COHEN, E. 2014. Animation of deformable bodies
with quadratic bézier finite elements. ACM Trans. Graph. 33, 27:1–27:10.

BARGTEIL, A. W., WOJTAN, C., HODGINS, J. K., AND TURK, G. 2007.
A finite element method for animating large viscoplastic flow. ACM
Trans. Graph. 26, 16:1–16:8.

BATHE, K. J. AND CIMENTO, A. P. 1980. Some practical procedures for
the solution of nonlinear finite element equations. Computer Methods in
Applied Mechanics and Engineering 22, 59–85.

BENDER, J., KOSCHIER, D., CHARRIER, P., AND WEBER, D. 2014.
Position-based simulation of continuous materials. Computers & Graph-
ics 44, 1–10.

BENDER, J., MÜLLER, M., OTADUY, M. A., TESCHNER, M., AND

MACKLIN, M. 2014. A survey on position-based simulation methods
in computer graphics. In Comput. Graph. Forum. Vol. 33. 228–251.

BOUAZIZ, S., DEUSS, M., SCHWARTZBURG, Y., WEISE, T., AND PAULY,
M. 2012. Shape-up: Shaping discrete geometry with projections. In
Comput. Graph. Forum. Vol. 31. 1657–1667.

BOUAZIZ, S., MARTIN, S., LIU, T., KAVAN, L., AND PAULY, M. 2014.
Projective dynamics: Fusing constraint projections for fast simulation.
ACM Trans. Graph. 33, 154:1–154:11.

CHAO, I., PINKALL, U., SANAN, P., AND SCHRÖDER, P. 2010. A simple
geometric model for elastic deformations. ACM Trans. Graph. 29, 38:1–
38:6.

CHEN, D., LEVIN, D., SUEDA, S., AND MATUSIK, W. 2015. Data-driven
finite elements for geometry and material design. ACM Trans. Graph. 34,
74:1–74:10.

DENG, B., BOUAZIZ, S., DEUSS, M., ZHANG, J., SCHWARTZBURG, Y.,
AND PAULY, M. 2013. Exploring local modifications for constrained
meshes. In Comput. Graph. Forum. Vol. 32. 11–20.

DESBRUN, M., SCHRÖDER, P., AND BARR, A. 1999. Interactive anima-
tion of structured deformable objects. Graphics Interface 99, 10.

DEUFLHARD, P. 2011. Newton methods for nonlinear problems: affine
invariance and adaptive algorithms. Springer Science & Business Media.

FISH, J., PANDHEERADI, M., AND BELSKY, V. 1995. An efficient mul-
tilevel solution scheme for large scale non-linear systems. International
Journal for Numerical Methods in Engineering 38, 1597–1610.

FRATARCANGELI, M. AND PELLACINI, F. 2015. Scalable partitioning for
parallel position based dynamics. Comput. Graph. Forum 34, 405–413.

GAST, T. F., SCHROEDER, C., STOMAKHIN, A., JIANG, C., AND TERAN,
J. M. 2015. Optimization integrator for large time steps. Visualization
and Comp. Graph., IEEE Transactions on 21, 1103–1115.

GEORGII, J. AND WESTERMANN, R. 2006. A multigrid framework for
real-time simulation of deformable bodies. Computers & Graphics 30, 3,
408–415.

GOLDENTHAL, R., HARMON, D., FATTAL, R., BERCOVIER, M., AND

GRINSPUN, E. 2007. Efficient simulation of inextensible cloth. ACM
Trans. Graph. 26, 49:1–49:7.

HAHN, F., MARTIN, S., THOMASZEWSKI, B., SUMNER, R., COROS, S.,
AND GROSS, M. 2012. Rig-space physics. ACM Trans. Graph. 31, 72:1–
72:8.

HAIRER, E., LUBICH, C., AND WANNER, G. 2002. Geometric Numeri-
cal Integration: Structure-Preserving Algorithms for Ordinary Differen-
tial Equations. Springer.

HARMON, D., PANOZZO, D., SORKINE, O., AND ZORIN, D. 2011.
Interference-aware geometric modeling. In ACM Trans. Graph. Vol. 30.
137:1–137:10.

HARMON, D. AND ZORIN, D. 2013. Subspace integration with local de-
formations. ACM Trans. Graph. 32, 107:1–107:10.

HAUTH, M. AND ETZMUSS, O. 2001. A high performance solver for the
animation of deformable objects using advanced numerical methods. In
Comput. Graph. Forum. Vol. 20. 319–328.

HECHT, F., LEE, Y. J., SHEWCHUK, J. R., AND O’BRIEN, J. F. 2012.
Updated sparse cholesky factors for corotational elastodynamics. ACM
Trans. Graph. 31, 123:1–123:13.

HESTENES, M. R. AND STIEFEL, E. 1952. Methods of conjugate gradients
for solving linear systems. Vol. 49. NBS.

ICHIM, A.-E., KAVAN, L., NIMIER-DAVID, M., AND PAULY, M. 2016.
Building and animating user-specific volumetric face rigs. In Proc. EG
Symp. Computer Animation. 107–117.

IRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible finite elements
for robust simulation of large deformation. In Proc. EG Symp. Computer
Animation. 131–140.

KHAREVYCH, L., YANG, W., TONG, Y., KANSO, E., MARSDEN, J. E.,
SCHRÖDER, P., AND DESBRUN, M. 2006. Geometric, variational inte-
grators for computer animation. In Proc. EG Symp. Computer Animation.
43–51.

KIM, T.-Y., CHENTANEZ, N., AND MÜLLER-FISCHER, M. 2012. Long
range attachments-a method to simulate inextensible clothing in com-
puter games. In Proc. EG Symp. Computer Animation. 305–310.

KOVALSKY, S. Z., GALUN, M., AND LIPMAN, Y. 2016. Accelerated
quadratic proxy for geometric optimization. ACM Trans. Graph. 35,
134:1–134:11.

LI, S., HUANG, J., DE GOES, F., JIN, X., BAO, H., AND DESBRUN, M.
2014. Space-time editing of elastic motion through material optimization
and reduction. ACM Trans. Graph. 33, 108:1–108:10.

LIU, T., BARGTEIL, A. W., O’BRIEN, J. F., AND KAVAN, L. 2013. Fast
simulation of mass-spring systems. ACM Trans. Graph. 32, 214:1–214:7.

MACKLIN, M. AND MÜLLER, M. 2013. Position based fluids. ACM Trans.
Graph. 32, 104:1–104:12.

MACKLIN, M., MÜLLER, M., CHENTANEZ, N., AND KIM, T.-Y.
2014. Unified particle physics for real-time applications. ACM Trans.
Graph. 33, 153:1–153:12.

MARTIN, S., THOMASZEWSKI, B., GRINSPUN, E., AND GROSS, M.
2011. Example-based elastic materials. In ACM Trans. Graph. Vol. 30.
72:1–72:8.

MARTIN, T., JOSHI, P., BERGOU, M., AND CARR, N. 2013. Efficient non-
linear optimization via multi-scale gradient filtering. In Comput. Graph.
Forum. Vol. 32. 89–100.

MCADAMS, A., ZHU, Y., SELLE, A., EMPEY, M., TAMSTORF, R.,
TERAN, J., AND SIFAKIS, E. 2011. Efficient elasticity for character skin-
ning with contact and collisions. ACM Trans. Graph. 30, 37:1–37:12.

MÜLLER, M. 2008. Hierarchical Position Based Dynamics. In Workshop in
Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2008).
The Eurographics Association.

MÜLLER, M. AND CHENTANEZ, N. 2011. Solid simulation with oriented
particles. In ACM Trans. Graph. Vol. 30. 92:1–92:10.

MÜLLER, M., CHENTANEZ, N., KIM, T.-Y., AND MACKLIN, M. 2014.
Strain based dynamics. In Proc. EG Symp. Computer Animation. Vol. 2.
149–157.

MÜLLER, M., CHENTANEZ, N., KIM, T.-Y., AND MACKLIN, M. 2015.
Air meshes for robust collision handling. ACM Trans. Graph. 34, 133:1–
133:9.

MÜLLER, M., DORSEY, J., MCMILLAN, L., JAGNOW, R., AND CUTLER,
B. 2002. Stable real-time deformations. In Proc. EG Symp. Computer
Animation. 49–54.

MÜLLER, M. AND GROSS, M. 2004. Interactive virtual materials. In Pro-
ceedings of Graphics Interface. 239–246.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

16 • T. Liu, S. Bouaziz and L. Kavan

MÜLLER, M., HEIDELBERGER, B., HENNIX, M., AND RATCLIFF, J.
2007. Position based dynamics. J. Vis. Comun. Image Represent. 18,
109–118.

MÜLLER, M., HEIDELBERGER, B., TESCHNER, M., AND GROSS, M.
2005. Meshless deformations based on shape matching. In ACM Trans.
Graph. Vol. 24. 471–478.

NARAIN, R., OVERBY, M., AND BROWN, G. E. 2016. ADMM ⊇ pro-
jective dynamics: Fast simulation of general constitutive models. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. SCA ’16. 21–28.

NARAIN, R., SAMII, A., AND O’BRIEN, J. F. 2012. Adaptive anisotropic
remeshing for cloth simulation. ACM Trans. Graph. 31, 152:1–152:10.

NEUBERGER, J. 1983. Steepest descent for general systems of linear dif-
ferential equations in hilbert space. In Ordinary differential equations
and operators. Springer.

NEUBERGER, J. 2009. Sobolev gradients and differential equations.
Springer Science & Business Media.

NOCEDAL, J. AND WRIGHT, S. J. 2006. Numerical optimization. Springer
Verlag.

RIVERS, A. AND JAMES, D. 2007. FastLSM: fast lattice shape matching
for robust real-time deformation. ACM Trans. Graph. 26, 82:1–82:6.

SERVIN, M., LACOURSIÈRE, C., AND MELIN, N. 2006. Interactive sim-
ulation of elastic deformable materials. In In The Annual SIGRAD Con-
ference; Special Theme: Computer Games. Vol. 19.

SIFAKIS, E. AND BARBIČ, J. 2012. Fem simulation of 3d deformable
solids: A practitioner’s guide to theory, discretization and model reduc-
tion. In ACM SIGGRAPH Courses. 20:1–20:50.

STAM, J. 2009. Nucleus: towards a unified dynamics solver for computer
graphics. In IEEE Int. Conf. on CAD and Comput. Graph. 1–11.

TAMSTORF, R., JONES, T., AND MCCORMICK, S. F. 2015. Smoothed ag-
gregation multigrid for cloth simulation. ACM Trans. Graph. 34, 245:1–
245:13.

TENG, Y., MEYER, M., DEROSE, T., AND KIM, T. 2015. Subspace con-
densation: Full space adaptivity for subspace deformations. ACM Trans.
Graph. 34, 76:1–76:9.

TENG, Y., OTADUY, M. A., AND KIM, T. 2014. Simulating articulated
subspace self-contact. ACM Trans. Graph. 33, 106:1–106:9.

TERAN, J., SIFAKIS, E., IRVING, G., AND FEDKIW, R. 2005. Robust qua-
sistatic finite elements and flesh simulation. In Proc. EG Symp. Computer
Animation. 181–190.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K. 1987.
Elastically deformable models. In Computer Graphics (Proceedings of
SIGGRAPH). Vol. 21. 205–214.

THOMASZEWSKI, B., PABST, S., AND STRASSER, W. 2009. Continuum-
based strain limiting. In Comput. Graph. Forum. Vol. 28. 569–576.

TOURNIER, M., NESME, M., GILLES, B., AND FAURE, F. 2015. Stable
constrained dynamics. ACM Trans. Graph. 34, 132:1–132:10.

VALANIS, K. C. AND LANDEL, R. F. 1967. The strain-energy function
of a hyperelastic material in terms of the extension ratios. Journal of
Applied Physics 38, 2997–3002.

WANG, H. 2015. A chebyshev semi-iterative approach for accelerating
projective and position-based dynamics. ACM Trans. Graph. 34, 246:1–
246:9.

WANG, H., O’BRIEN, J., AND RAMAMOORTHI, R. 2010. Multi-resolution
isotropic strain limiting. ACM Trans. Graph. 29, 156:1–156:10.

XU, H., SIN, F., ZHU, Y., AND BARBIČ, J. 2015. Nonlinear material
design using principal stretches. ACM Trans. Graph. 34, 75:1–75:11.

Appendix
In this Appendix we compute the gradient∇xEi(x), where Ei(x)
is defined according to Eq. 1. Dropping the subscript i for clarity,
we define the projection:

p(x) = argmin
z∈M

‖Gx− z‖2, (15)

where G represents a discrete differential operator andM is a con-
straint manifold. We need to compute the differential:

1

2
δ‖Gx− p(x)‖2 = (Gx− p(x))T(Gδx− δp(x)) (16)

= (Gx− p(x))TGδx (17)

because the second term (Gx − p(x))Tδp(x) vanishes. This is
due to the fact that δp(x) ∈ Tp(x)M, where Tp(x)M denotes the
tangent space at point p(x) ∈M. The vector Gx− p(x) must be
orthogonal to Tp(x)M, otherwise p(x) could not be the minimizer
according to Eq. 15.

Received May 2016; accepted December 2016

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

	Introduction
	Related Work
	Background
	Method
	More general materials
	Accelerating convergence
	Collisions
	Anisotropy

	Results
	Limitations and Future Work
	Conclusions

