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Fig. 1. Top: We propose MeshTaichi: a high-level programming model to handle mesh-based operations efficiently. By exploiting data locality and memory
hierarchy, our compiler generates high-performance CPU/GPU computational kernels. As a result, we achieve much better performance than the state-of-the-
art compilers and data structures. Bottom:We implement the MLS-MPM algorithm with FEM-based Lagrangian-force using our programming language. The
simulation consists of 17, 010 armadillos with 222, 048, 540 vertices and 713, 739, 600 tetrahedrons in total. Each frame consists of 300 substeps and takes 2.4
minutes on average on an NVIDIA A100 Tensor Core GPU.

Meshes are an indispensable representation in many graphics applications
because they provide conformal spatial discretizations. However, mesh-
based operations are often slow due to unstructured memory access patterns.
We propose MeshTaichi, a novel mesh compiler that provides an intuitive
programming model for efficient mesh-based operations. Our programming
model hides the complex indexing system from users and allows users to
write mesh-based operations using reference-style neighborhood queries.
Our compiler achieves its high performance by exploiting data locality.
We partition input meshes and prepare the wanted relations by inspecting
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users’ code during compile time. During run time, we further utilize on-chip
memory (shared memory on GPU and L1 cache on CPU) to access the wanted
attributes of mesh elements efficiently. Our compiler decouples low-level
optimization options with computations, so that users can explore different
localized data attributes and different memory orderings without changing
their computation code. As a result, users can write concise code using our
programming model to generate efficient mesh-based computations on both
CPU and GPU backends. We test MeshTaichi on a variety of physically-based
simulation and geometry processing applications with both triangle and
tetrahedron meshes. MeshTaichi achieves a consistent speedup ranging from
1.4× to 6×, compared to state-of-the-art mesh data structures and compilers.
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1 INTRODUCTION
Meshes are widely used as discretization forms in many physically-
based simulation and geometry processing applications. Unlike regu-
lar grid data structures, a mesh can conform to any desired geometry
with localized resolutions. However, the advantage of meshes comes
at a cost. First, the topological information of meshes need to be
managed explicitly. One can compute the indices of a grid element’s
neighbors by simply offsetting its grid index; however, they need to
lookup a relation table to decide where a mesh element’s neighbor
are. It can be worse when the wanted relation is not stored explicitly
in the relation tables so it needs to be computed on the fly. For
example, to find all neighboring vertices of a certain vertex, we
often need to first check the edges connected to that vertex, and
then acquire the other vertices of those edges. Second, even if the
indices are given, the access of these mesh attributes is often in
a less coherent way. Although mesh-based operations are usually
local, the data attributes associated with these operations can be
scattered far away in memory. For example, when we query the
position attributes of three vertices of a triangle, the indices of these
vertices are not very likely to stay together. The attributes of these
three vertices may not exhibit spatial locality. The situation can
be even worse in GPUs where memory access is more expensive
than computations. In short, compared to grid-based operations,
the major overhead for mesh-based operations comes from two
aspects: (1) we need extra relation data structures to maintain
the indices of wanted attributes in a mesh; (2) we often query these
mesh attributes via unstructured access patterns that lead to more
frequent cache misses.

Improving performance for mesh-based operations is not an easy
task for users. It requires repetitive profiling and tuning to optimize
the memory layout and the caching scheme. While the shared mem-
ory on GPU and the L1 cache on CPU provide significant speedup at
hardware level, manually utilizing these memory hierarchies often
fails to achieve high performance and high productivity at the same
time – it usually ends up with either inefficient or lengthy code.
Producing efficient and easy-to-use mesh-based operations is a chal-
lenging problem for high-performance mesh-based applications. To
be more specific, we desire a concise programming interface to hide
the complex indexing problem for all types of meshes, and simulta-
neously, we strive for high performance via low-level data access
optimizations to fully utilize powerful on-chip memory. Therefore,
we believe a high-level mesh programming model and a correspond-
ing high-performance mesh compiler shall be the key.
We propose MeshTaichi, a novel mesh compiler that provides

an intuitive programming model to handle mesh-based operations
efficiently. We summarize our main design goals and corresponding
contributions as follows:

1. Uniformly handle all kinds of mesh elements in both
2D and 3D, including vertices, edges, triangle faces, and tetra-
hedron elements. Unlike regular grids, meshes are naturally
versatile and involve much more complex topology. We de-
sign an intuitive programming model that enables users to
access all kinds of elements. We support natural-language-
like grammar to queries different mesh elements such as “for
every vertex in a bunny”.

2. Intuitive syntax for neighborhood access.While meshes
involve complex relations, we want to hide all the complex-
ity from programmers. Instead of tracing all elements using
their global indices indicating physical memory addresses,
our system allows users to query attributes of neighborhood
elements using reference styles, such as “velocity of the fourth
vertex in a tetrahedron” or “positions of all neighboring ver-
tices of a vertex”.We achieve this by partitioning inputmeshes
into patches and pre-computing all wanted relations for each
patch by inspecting users’ code in compile time.

3. Efficientmesh attribute access. The unstructured memory
access pattern for mesh attributes is a major problem to slow
mesh-based operations down. Our compiler takes over the
caching scheme for mesh attributes, managing the attribute
exchange between global and shared memory on our own.
This ensures most mesh attributes are cached before they are
needed for computations, greatly reducing memory overhead
for attribute reads and writes.

4. Decoupled low-level mesh optimization options from
implementation. Our compiler also decouples the low-level
optimization from computations. Programmers can query
any attribute of any mesh element without knowing which
patch that element may belong to or what memory ordering
that attribute is saved with. We further provide some compiler
optimization hints, allowing users to exploit different cached
attributes and different memory orderings without changing
their computation code.

5. Automatic parallelized execution formultiple backends.
Modern simulations often need to handle large meshes. Our
compiler has a solid backend implementation that automat-
ically generates efficient kernels to compute on mesh at-
tributes within on-chip memory in parallel, for both CPU
and GPU architectures. We also reduce the inter-patch com-
munication overhead by investigating patching algorithms.

We conduct a thorough evaluation of our system, demonstrating
its performance and scalability. Our system provides a consistent
speedup ranging from 1.4× to 6× compared with other mesh data
structures and compilers. We also provide several state-of-the-art
implementation of mesh-based simulations and geometry process-
ing algorithms as by-products. We build our mesh compiler upon
the open-source programming language Taichi [Hu et al. 2019]. The
source code of our implementation is now officially a part of Taichi.

2 RELATED WORK
Meshes naturally provide conforming discretizations to wanted
geometries. They are frequently used in computer graphics applica-
tions to represent the virtual objects such as cloth [Baraff andWitkin
1998; Terzopoulos et al. 1987], hair [Yuksel et al. 2009], plants [Zhao
and Barbič 2013], flesh [Kadleček et al. 2016], faces [Blanz and Vet-
ter 1999] or even humans [Chen et al. 2021]. Many research works
focus on computing the quantities on meshes like the vertex nor-
mal [Max 1999], the geodesic distance [Calla et al. 2019], and the
mean curvature flow [Desbrun et al. 1999], whereas some other
works use the explicit topological information of meshes to acceler-
ate their applications [Liu et al. 2013; Narain et al. 2016; Xian et al.
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2019]. Meshes can also be used together with structured grids to
produce interpenetration-free results [Fang et al. 2019; Jiang et al.
2017]. There are applications (e.g., rendering) requiring only the sur-
face structure and applications taking the volumetric information
of meshes. Tools such as Tetgen [Si 2015] and TetWild [Hu et al.
2018b] are used to convert surface meshes to their corresponding
volumetric representations.

Unlike grid-based structures where users can implicitly infer any
grid attribute’s data address, managing the data attributes and re-
lations on meshes is more complicated due to their unstructured
typologies. Varies of data structures are used to access the mesh
data efficiently. Quad edges [Guibas and Stolfi 1985] focus on data
structures for Voronoi diagrams, supporting users to visit the dual
and the mirror-image information easily. Winged edges [Baum-
gart 1972] support polygonal faces. The winged-edge data structure
stores neighboring faces, edges, and vertices for each edge. Half
edges [Mäntylä 1987] are designed for two-dimensional polygonal
surface meshes. It divides one edge into two halves to represent the
two neighboring faces and allows users to visit the next, the previous,
and the opposite counterpart of the edges. Directed edges [Cam-
pagna et al. 1998] provide a special treatment for triangle meshes
to improve the performance further. These data structures achieve
constant time complexity to perform neighbor queries, but they are
not optimized for parallel computing architectures. RXMesh [Mah-
moud et al. 2021] introduces a mesh data structure specified for
GPU. It subdivides the mesh into patches and performs better by
caching the mesh relations into the shared memory. While mesh
data structures provide a reliable attribute accessing scheme for
users, their static memory allocation brings redundant costs when
users only want to visit a small fraction of the mesh (e.g., only the
vertices and edges but not the faces).

Many libraries provide canned implementations to save users’
efforts. OpenMesh [Botsch et al. 2002] and CGAL [Kettner and Cacci-
ola 2006] provide a stable and solid implementation of the half-edges.
RXMesh [Mahmoud et al. 2021] provides an accompanying imple-
mentation to its own data structure with a further improvement
utilizing the shared memory. The disadvantage of the libraries come
from two aspects. First, most libraries are designed upon a specific
programming language, such as C++ or CUDA. The underlying lan-
guages usually restrict the portability of these libraries. Second, the
libraries miss the chance to optimize users’ code in compile-time;
hence they need to expose many low-level interfaces to users as
further acceleration hints.

Some previous works resort to domain-specific languages (DSLs)
to overcome the portability and productivity problems aforemen-
tioned. GraphIt [Zhang et al. 2018] is a DSL for graph computations
on CPU. GraphIt decouples algorithm from optimization for graph
applications. Users can use GraphIt’s optimization representation to
easily switch to different data layouts and try different combinations
of optimization techniques. But GraphIt is not optimized for GPU
applications. The unified GraphIt compiler(UGC) [Brahmakshatriya
et al. 2021] extends GraphIt to multiple backends including GPU.
But it only focuses on proper scheduling to improve load-balancing.
Both GraphIt and UGC do not manage the caching scheme explicitly
hence miss the opportunity to exploit data locality. Simit [Kjolstad
et al. 2016] allows the users to view the data relations as a form

of hyper-graph, where all the computations are applied on the ab-
stracted vectors, matrices, and tensors. The abstraction helps users
focus more on the computation than on the low-level attribute-
access details. Liszt [DeVito et al. 2011] is a DSL for constructing
mesh-based PDE solvers. The focus of Liszt is to provide portable
programming models with heterogeneous processors and hardware
accelerators. Ebb [Bernstein et al. 2016] is a new implementation of
the Liszt programming model designed to support a broader range
of simulation applications other than pure PDE solvers. Ebb uses
a three-layer architecture to separate the frontend code, the do-
main libraries, and the run-time libraries. The domain library layer
of Ebb is programmable, supporting a wider range of geometric
domains. Both Simit and Ebb handle the input mesh as a general
formed matrix or graph. These high-level linguistic abstractions
provide portable and productive programming models, but they do
not further exploit data locality to improve the performance. De-
tailed discussions about why we need new programming languages
and about the core design strategies of Simit and Ebb can be found
in Bernstein and Kjolstad [2016].

Data locality is a crucial factor for large-scale computations. One
way to improve the data locality is to manage the order and layout
of the stored data manually, such as using Morton code to store par-
ticles using a Z-order curve in particle-based fluid simulations [Ihm-
sen et al. 2011]. Another way is to subdivide data into smaller chunks
and to perform computations chunk-wisely. For instance, Gao et
al. [2018] apply a sparse grid with scratchpad optimizations to uti-
lize the shared memory for the material point method. Ghost cell
patterns [Kjolstad and Snir 2010] can be used to provide cached
data at the periphery of chunks for regular grids. RXMesh [Mah-
moud et al. 2021] further extends the idea of ghost-cells to irregular
meshes, and calls them the “ribbons”.

Taichi [Hu et al. 2019] is an open-source data-oriented DSL which
improves data locality using compiler knowledge. Taichi has a
unique structural node system that decouples the computation from
the underlying data layouts. This decoupling enables users to switch
among different memory layouts without changing the computa-
tion. However, Taichi only exploits data locality for structured grids
but not for meshes. Users need to implement all the mesh data
structures from scratch and manage the indexing systems on their
own. We build our programming language upon Taichi to inherit
its portability. We further design our novel mesh data localization
scheme to exploit data locality for efficient mesh-based operations.

Relation to RXMesh. Our mesh compiler has a conceptual affinity
to the state-of-the-art mesh library RXMesh because we both subdi-
vide a mesh into smaller patches and we both use ribbons to reduce
the inter-patch communication overhead. The fundamental design
divergence between our system and RXMesh comes from our data
localization strategies: our compiler localizes mesh attributes only
while RXMesh localizes mesh relations only. As a library, RXMesh
can not analyze wanted relations and attributes from users’ code
before run time automatically. It therefore adopts a compact linear
algebraic representation [DiCarlo et al. 2014] to represent mesh
relations and caches these relations into shared memory so users
can compute the indices of their wanted relation efficiently in run
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time. RXMesh does not cache any mesh attributes which are usu-
ally not stored coherently (such as vertex normals or edge lengths).
It still suffers from frequent cache misses. We observe that mesh-
based operations are often called repeatedly from applications, e.g.
the spring force evaluation can be called hundreds times within
a second in a mass-spring simulation. Computing relations every
time can be a waste. As a compiler, our system can inspect users’
code to pre-compute all required relations from certain applications
and store those relations in global memory during compile time. In
run time, our compiler manages the caching scheme for mesh at-
tributes explicitly to exploit data locality. We take over the attribute
data exchange between shared and global memory to ensure that
most attributes are cached before they are needed for computations.
To balance between data locality and occupancy, we choose not to
cache any relations to maximize performance. We conduct thorough
validations for this design decision in Section 7.2. Besides this major
difference on data localization, our system also provides a more
concise programming interface, a more flexible programming
model that supports multiple relations inside one computation
kernel, and more expressive relation coverage including volumet-
ric elements and edge-edge relations, compared to RXMesh.

3 BACKGROUND

3.1 Meshes, Relations, and Attributes
We define a triangle mesh using M3 = {V, E, F } and define a
tetrahedron mesh usingM4 = {V, E, F , C}, consisting of vertices
V , edges E, faces F and cells C. We call a vertex, an edge, a face
or a cell a mesh element, or an element for short. A 𝑛-d element
represents an element consisting of 𝑛 + 1 vertices. For example,
vertices are 0-d elements, edges, faces, and cells are 1-d, 2-d, and
3-d elements, respectively. Two 𝑛-d elements are neighbors iff they
share a (𝑛 − 1)-d element. TheVV neighborhood, as a special case,
is defined when two vertices are in the same edge since vertices are
already 0-d elements. A 𝑛-d element and a𝑚-d element (𝑛 > 𝑚) are
neighbors iff the𝑚-d element is exactly a subset of the 𝑛-d element.
Taking a mass-spring system as an example, two springs (two 1-d
elements) are neighbors iff they share one vertex; A spring’s 0-d
neighbors are its two end-points; A vertex’s 1-d neighbors are all
the springs connected to it.
A relation AB defines the neighborhood between two mesh el-

ements A and B, as we always access the relation from A to B,
we call A the from-end element and call B the to-end element. If
A is an 𝑛-d element and B is an𝑚-d element in relation AB, we
call the relation a static relation when 𝑛 > 𝑚 because each from-end
element has a static number of to-end neighbors. Otherwise, we
call the relation a dynamic relation, because each from-end element
may have different numbers of to-end neighbors. For instance, a
CV relation is an static relation since each tetrahedral cell has four
vertex neighbors, and aVE relation is an dynamic relation because
a vertex can be linked with arbitrary number of edges.

We refer mesh attributes (or attributes for simplicity) as the quan-
tities defined on certain types of elements. For example, in a mass-
spring system, each vertex may have its mass, position, velocity, and
force attributes, and each edge has a rest_length attribute.

Gathering style Scattering style

vertex

edge

from-end
to-end

data-flow

Fig. 2. Two typical styles of local mesh-based operations. Left: The
gathering-style operation in a VV relation. Right: The scattering-style op-
eration in an EV relation.

3.2 Mesh-based Operations
We focus on local mesh-based operations which can load and store
attributes from arbitrary elements and their neighbors. While mesh-
based operations may involve different attributes, they have two
typical styles: gathering style and scattering style. The gathering-
style operations read attributes from the neighbors of an element
and store attributes to the element itself. The scattering-style opera-
tions, on the contrary, reads attributes from an element and writes
attributes to its neighbors. Note that users can perform different
mesh operations to achieve the same goal. For example, in a mass-
spring systemwhere users want to compute the force for each vertex,
they can either use the EV relation to store the force attributes
using the scattering-style operations, or use the VV relation to
compute the force attributes using gathering-style operations as
shown in Figure 2.

3.3 Data flow of a typical Mesh-based Operation

x (Attribute)

v1 float[3]

v2 float[3]

v3 float[3]

v4 float[3]

v5 float[3]

n (Attribute)

v1 float[3]

v2 float[3]

v3 float[3]

v4 float[3]

v5 float[3]

face_id

vert_id(s)

vert_id(s)

F-V Relation

f1 v1 v2 v4

f2 v2 v3 v4

f3 v2 v3 v1

f4 v1 v3 v4

f5 v1 v4 v5

f6 v3 v5 v1

f7 v5 v3 v4

Fig. 3. Typical data flow to per-
form vertex normal computa-
tions on a mesh.

Compared with grid-based op-
erations, mesh-based operations
havemuch highermemory access
overhead. This is caused by the
unstructured memory access pat-
tern from meshes. Let us take a
vertex normal computation as an
example to illustrate the data flow
of a typical mesh-based operation
and to explain why such mesh-
based operations are slow. In this
example, we need to first com-
pute the surface normal for each
triangle using positions of its ver-
tices first, then scatter the com-
puted surface normal to its ver-
tices. As we can see from Figure 3,
we need to first visit an FV re-

lation table to load the indices of vertices belonging to a face and
visit a position array using the indices to load the position attributes
for these vertices. Once the face normal is computed, we need to
visit another normal array to store the normal back. This simple
mesh operation involves at least one relation access and two at-
tribute accesses for every triangle face. The cache hit rate can make
it even worse: due to the nature of unstructured memory access for
meshes, the wanted attributes are less likely to stay contiguously in
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global memory. The storing statement can further hurt the perfor-
mance because it raises potential data races and is often protected
by expensive atomic operations.

4 PROGRAMMING MODEL
We demonstrate the usage of MeshTaichi using an explicit finite
element method example with the Neo-Hookean model following
the course note [Sifakis and Barbic 2012]. The First Piola-Kirchhoff
stress tensor is given as:

𝑃 (𝐹 ) = 𝜇 (𝐹 − 𝐹−𝑇 ) + 𝜆 log(𝐽 )𝐹−𝑇 (1)

where 𝐹 describes the deformation gradient, 𝐽 is the determinant of
𝐹 , and 𝜇 and 𝜆 are the Lamé coefficients.

4.1 Describing the Mesh Data
We need to define mesh data structures before applying them to
computations. In this section, we provide the following APIs to
create our new mesh data types:

1 mesh = ti.TetMesh() # new tetrahedron mesh data type
2 # mesh = ti.TriMesh() # new triangle mesh data type

Note that mesh is a mesh data type instead of a mesh instance. A
mesh can be instantiated by multiple models.
The next step is to define the attributes for each mesh element.

The type of a mesh attribute can be a scalar, a vector, a matrix,
or their corresponding quantized versions [Hu et al. 2021]. In this
FEM example, each vertex has three attributes: the position pos, the
velocity vel and the force applied to it force. All three attributes are
floating-point type three-dimensional vectors based on the Taichi
type system. Each (tetrahedral-)cell in the mesh has two attributes:
the rest-pose volume w which is a floating-point scalar, and the
inverted rest-pose shape matrix B which is a 3 × 3 matrix. The code
snippet defining the mesh elements is listed below.

1 mesh.verts.place({'pos' : ti.math.vec3,
2 'vel' : ti.math.vec3,
3 'force' : ti.math.vec3})
4 mesh.cells.place({'B' : ti.math.mat3,
5 'w' : ti.f32})

Once the data types are all defined, users can instantiate a model
with an external file:

1 bunny = mesh.build('./bunny.mesh')

Our compiler can instantiate triangle meshes using surface repre-
sentation formats like “.obj” and “.ply” files, or volumetric represen-
tation formats like “.mesh” file. Once the mesh model is instantiated,
our compiler will further partition the meshes to generate metadata.
Details are further discussed in Section 6.4.

4.2 Computing on a Mesh
The mesh computations are declared within a mesh-for of a kernel,
which can be as simple as shown below.

1 # parallel loop over all mesh cells
2 for c in bunny.cells:
3 ...
4 # parallel loop over all mesh vertices
5 for v in bunny.verts:
6 ...

A mesh-for has very similar syntax as a range-for which loops
over the indices in an interval. It is specified with a mesh object’s
element type (e.g., cells or vertices). Each element inside a mesh is
queried with an index-free reference style. The elements’ indices
and their corresponding memory addresses are hidden from the
users. Our compiler parallelizes the outermost mesh-for loops with
high-performance kernels, so that the looped mesh elements are
efficiently computed in parallel.
Most mesh-based operations involve not only the attributes of

an element, but the attributes of the neighboring elements as well.
Our compiler allows users to access neighbor attributes either with
reference-based queries using another nested sequential mesh-for
loop or with index-based queries using a range-for loop as shown
below.

1 for c in bunny.cells:
2 total_force = ti.math.vec3(0)
3 # reference-based access
4 for v in c.verts:
5 total_force += v.force

1 for c in bunny.cells:
2 total_force = ti.math.vec3(0)
3 # index-based access
4 for i in range(c.verts.size):
5 total_force += c.verts[i].force

Now we have the way to access the neighbors. Let us wrap ev-
erything up and write a substep() function to calculate the force
(according to Eq. 1) and perform explicit time integration in a finite
element simulation:

1 @ti.kernel
2 def substep():
3 for c in bunny.cells:
4 Ds0 = c.verts[0].pos - c.verts[3].pos
5 Ds1 = c.verts[1].pos - c.verts[3].pos
6 Ds2 = c.verts[2].pos - c.verts[3].pos
7 F = ti.Matrix(Ds0, Ds1, Ds2).transpose() @ c.B
8 J = F.determinant()
9 F_ti = F.transpose().inverse()
10 P = (F - F_ti) * mu + F_ti * la * ti.log(J)
11 H = -c.w * P @ c.B.transpose()
12 c.verts[0].force += H[:, 0]
13 c.verts[1].force += H[:, 1]
14 c.verts[2].force += H[:, 2]
15 c.verts[3].force += -H[:, 0] - H[:, 1] - H[:, 2]
16
17 for v in bunny.verts:
18 # assuming unit mass for simplicity
19 v.vel += dt * v.force
20 v.pos += dt * v.vel

Our language frees users’ burden to think about using atomic
operations. The += operators inside a mesh-for will be atomic by
default to avoid race conditions. Our compiler will analyze the code
and demote the unnecessary atomic operations automatically.

4.3 Interacting with Non-mesh Data
Recall that we visit all elements in a mesh-for using their references,
users do not need to bookkeep their corresponding indices. However,
there are cases where the indices of elements are wanted. In these
cases, we refer users to visit the id attribute of an element. We
demonstrate an example to export the positions of vertices to an
external multi-dimensional array as follows:
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global edge 1

global edge 2

global edge n

…

Block 1

Block 3
…

global edge n+1

global edge n+2

global edge 2n
…

Block 2

Global Memory

global vert 1 x1 v1 f1

global vert 2 x2 v2 f2

global vert 3 x3 v3 f3

global vert M xM vM fM

…

local edge 1

local edge 2

local edge n1

…

Block 1

Block 3
…

local edge 1

local edge 2

local edge n2

…

Block 2

Global Load/Store

Local Load/Store

Block 1 Shared Memory
local vert 1 x1 f1

local vert 2 x2 f2

local vert m1 xm1 fm1

…

Block 2 Shared Memory
local vert 1 x1 f1

local vert 2 x2 f2

local vert m2 xm2 fm2

…

Localized Attribute Access

prologue

epilogue

prologue

epilogue

Naïve Attribute Access

Global Load

Global Load

Global Store

Global StoreLocal Load/Store

global vert 4 x4 v4 f4

global vert 5 x5 v5 f5

global vert 6 x6 v6 f6

Fig. 4. Left: Naïve data access for a physically-based simulation. The program visits the global memory directly to access the position (𝑥 ), velocity (𝑣) and
force (𝑓 ) data. Right: Our compiler localizes the position (𝑥 ) and force (𝑓 ) data into shared memory in this example. Visiting each cached attribute only
requires a shared memory access using its local index. We load the batched attribute data from global memory during a prologue pass and write them back
during an epilogue pass.

1 # An 1D array of len(bunny.verts) 3D f32 vectors
2 pos_ex = ti.Vector.field(3, ti.f32,
3 shape=len(bunny.verts))
4
5 @ti.kernel
6 def export():
7 for v in bunny.verts:
8 pos_ex[v.id] = v.pos

5 MESH-BASED COMPILER DESIGN
We observe that mesh-based operations are mostly out-of-cache
operations, making mesh-based applications memory bound and
low computational throughput. To be more specific, we summarize
the reasons for our observation as follows:

(1) In the modern hardware memory hierarchy, a global memory
(main memory in CPU and device memory in GPU) access
is often 10 ∼ 100× slower than on-chip memory access. The
irregular structure of a mesh makes it more likely to miss the
cache when fetching mesh attributes.

(2) GPUs require coalesced global memory access to maximize
bandwidth. The mesh computations with frequent neighbor
attribute visits incur irregular memory accesses, which are
hard to coalesce. The performance is often bound by such
access patterns.

(3) Some mesh-based operations compute attributes on an ele-
ment and store those attributes to that element’s neighbors.
We need to consider expensive atomic instructions to avoid
any data race in these scattering-style operations.

(4) Some queries involve dynamic relations (e.g. aVV relation).
These queries can visit different numbers of to-end neigh-
bors for different from-end elements. This raises potential
branch divergence problems that can further cause more
cache misses.

Naïve implementations of mesh-based operations involve fre-
quent global memory access in an unstructured way, which is ap-
parently inefficient as illustrated in the left of Figure 4. To perform

a mesh kernel efficiently, an ideal implementation would break the
massive mass-based operations into smaller blocks, execute the com-
putation of these small blocks independently, and even better, cache
all the computation-related mesh attributes into shared memory
in advance, as shown in the right of Figure 4. We target efficient
memory access as the top priority for our mesh compiler to address
the issues aforementioned. Therefore, our compiler manages the
attribute data exchange between global and shared memory for
mesh-based operations.
Our system partitions input meshes into smaller patches once

they are loaded. We then inspect the mesh-for kernels to decide the
wanted relations for each patch. We compute those relations and
store them into global memory. The mesh partitioning and relation
preparation steps are done in compile time. We also save these
information to files as our compiler metadata to prevent unnecessary
re-computations.
During run-time, our compiler loads all wanted mesh attributes

into shared memory in a prologue stage before the computations
take place, and stores necessary attributes back to global memory
in an epilogue stage when the computations are done. The attribute
localization strategy naturally addresses issue (1) since local memory
access is orders of magnitudes faster than global access. It will also
mitigate issue (3) and (4), because we reduce race conditions by
eliminating most inter-patch conflicts, and our cache misses due
to branch divergence is less expensive since dynamic relations will
only visit different numbers of local memory addresses instead of
global ones.

With our attribute localization scheme, our global memory access
happens mostly in prologue and epilogue stages. We also want these
memory access to be coalesced to address issue (2). Our compiler
further manages memory ordering and provides users with different
ordering options for all mesh attributes. Our design decouples the
ordering from computations so that users can explore different
ordering strategies without changing the computation kernels.
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5.1 Mesh Partitioning and Relation Preparation
We want to cache mesh attributes into shared memory. But appar-
ently the size of shared memory is too small to fit large mesh data as
a whole. We, therefore, need to partition input meshes into smaller
patches. The key idea of patching is to cluster mesh elements so
that each element can access its own attributes and its neighbors’
attributes in the same block of shared memory. To accelerate the
neighbor-attribute-accessing for peripheral elements inside a patch,
we pad an extra layer of elements from neighboring patches, simi-
larly with the ghost cell pattern [Kjolstad and Snir 2010] and ribbons
in RXMesh [Mahmoud et al. 2021]. We also adopt the name of rib-
bons from RXMesh for these padded elements and call them ribbon
elements. We refer other elements inside a patch as owned elements.

To maximize the utilization of shared memory, we pose two objec-
tives for our patching algorithm. First, the size of each patch needs
to be bounded, so we can estimate the shared memory size for each
patch easily. It would be even better if the sizes of all patches can
reach their upper bound to optimize load balancing. Second, we
want as fewer ribbon elements as possible because the attributes of
these ribbon elements are shared by at least two patches so that we
need to duplicate these attributes in shared memory for different
patches. For a given mesh, the total number of attributes fetched
from global memory, including the duplicated ones for those ribbon
elements, is proportional to 𝛾 =

𝑛𝑟+𝑛𝑜
𝑛𝑜

, where 𝑛𝑜 is the total num-
ber of owned elements that only depends on the input mesh, and
𝑛𝑟 is the total number of ribbon elements that also depends on the
patching algorithm. We use 𝛾 as the normalized theoretical global
memory access to indicate performance. Higher 𝛾 leads to more
total attributes fetched from global memory which indicates lower
performance. That is why we want to reduce the number of ribbon
elements by picking a good patching algorithm.
Several approximated algorithms can be applied to tackle this

patching problem. RXMesh uses a modified k-means clustering to
partition their meshes. Since k-means can not control the cluster size
explicitly, some patches may exceed their size limit. Extra seeds need
to be placed to further break those oversized patches. The problem of
k-means comes from its lack of patch size control. K-means tends to
partition input meshes into smaller-than-expected patches to satisfy
patch size constraints. The problem can be worse when partitioning
tetrahedral meshes where degrees of each elements increase severely
in three-dimensional space. We can for sure pack small patches
together to improve load balancing. But smaller patches also end
up with more ribbon elements which is a harder problem to fix.
We observe that the patch size is a crucial indicator for a good

partitioning. Larger patch sizes indicate that: first, patches are filled
with as many elements as possible, and second, patches tend to
have fewer ribbon elements – assuming that patches are approxi-
mately shaped as convex. We therefore apply a greedy algorithm
to maximize the size for each patch directly as shown in Alg. 1.
However, one disadvantage of this greedy patching algorithm is
that it generates a few tiny patches. Those tiny patches are often
results from some orphan elements whose neighbors are occupied
by other large patches. To improve load balancing, we further pack
these tiny patches with other patches until reaching their size limit.
We also perform the same packing strategy for k-means and find

Fig. 5. Patches generated using: left: k-means algorithm, and right: our
greedy algorithm.

that the total number of patches generated by our greedy algorithm
and k-means are comparable in most cases. However, the our greedy
patching algorithm makes the majority of elements stay in notably
larger patches compared to k-means, as shown in Figure 5. As a
result, the greedy patching algorithm also reduces the ribbon ele-
ments in most of our testing cases, especially for three-dimensional
examples. We analyze the influence of patching algorithms in the
validation section in Section 7.1.

ALGORITHM 1: Greedy Patching Algorithm.
while not all elements are patched do

find an unpatched element 𝑢
𝑆 ← {𝑢 }
while |S| < patch size do

𝑓 (𝑣) ← sum(connected(𝑣, 𝑤) for 𝑤 in 𝑆)
𝑣 = argmax(𝑓 (𝑣) ; 𝑣 is not in any patch and not in 𝑆)
𝑆 ← 𝑆 ∪ {𝑣 }

end
save 𝑆 as a new patch

end

The localized patches generates another indexing system. We
refer the original index of each element as the global index which
points to global memory address. After the mesh partitioning, each
element will be owned by one patch and be labeled with a unique
index to target within the patch, accessing (local) shared memory.
We call this index inside each patch a local index. Once the mesh
partitions are made, we prepare the wanted relations for each patch
by inspecting mesh-for kernels. We store the relations using their
local indices only, and setup a local-to-global mapping for each
mesh element to access its global index. Since the range of local
indices is limited by patch sizes, we use two-byte unsigned integers
to represent the local indices. This further reduces the relation
storage by half for large meshes. The estimated memory footprint
for relations is reported in Appendix B.
Both mesh partitioning and relation preparation steps are done

in compile time. Our compiler also file-caches these information as
compiler metadata. These metadata will be re-computed for changed
meshes.
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5.2 Mesh Attribute Localization
As illustrated in Figure 3, a simple mesh-based operation may in-
volve multiple global memory accesses to query the relation table
and to load/store attributes. Shall we cache all of them into shared
memory? Our answer is no. The size of shared memory is limited,
higher consumption of shared memory often ends up with lower oc-
cupancy. So we need to be very careful about shared memory usage.
We choose to localize only the wanted mesh attributes into shared
memory and leave the pre-computed relations in global memory.
Because the relations have been already computed in compile-time,
the relation queries in our system are relatively structured, even
for dynamic relations. Detailed validation experiments can be found
in Section 7.2.

5.2.1 Localizing Mesh Attributes with Optimization Hints. Our com-
piler provides a hint syntax mesh_local as a decorator of a mesh-for
to localize the mesh attributes by need:

1 # scheme 1: put attributes pos and force of vertices
into the shared memory

2 ti.mesh_local(bunny.verts.pos, bunny.verts.force)
3 for c in bunny.cells:
4 ...

The vertices attributes pos and force are the position and force
defined for the finite element method in Section 4.1. By inserting this
hint before line 3 (for c in bunny.cells:) defined in Section 4.2,
our compiler caches the pos and force into the shared memory
and replaces the attribute access from global memory to the local
memory without modifying the computation code.
Our compiler executes a systematic analysis and transform the

index space for these mesh attributes with this hint. We divide
the transformation process into three passes. First, the compiler
emits a prologue pass to fetch the wanted attributes from global
memory to shared memory. Second, as the attributes have been
localized, we can access and update them from shared memory
based on their local indices. At last, when attributes are updated
due to write-access, our compiler will emit an epilogue pass to write
mesh attributes back to global memory as shown in the right of
Figure 4. Since we write data back to global memory in batches,
potential write-conflicts encountered by our epilogue pass is greatly
reduced compared to an unoptimized attribute access scheme. We
will discuss the implementation of transformation passes in detail
in Section 6.2.

Remember that there is a trade-off between shared memory usage
per block and occupancy in the GPU? When shared memory size
per block increases, the occupancy will decrease because a multipro-
cessor’s shared memory is partitioned among the resident thread
blocks. Moreover, the shared memory size is limited and will be
quickly exhausted if we cache too many attributes. We therefore
decouple our hint mechanism from the computation code, allowing
the developers to exploit the best attribute caching scheme with
little effort. For example, the aforementioned scheme can be easily
switched to other schemes:

1 # Scheme 2: only cache attributes force
2 ti.mesh_local(bunny.verts.force)
3 for c in bunny.cells:
4 ...

5 # Scheme 3: cache attributes pos in vertices and B in
cells

6 ti.mesh_local(bunny.verts.pos, bunny.cells.B)
7 for c in bunny.cells:
8 ...

Complex mesh-based operations may involve multiple mesh at-
tributes and external arrays. Our mesh_local decorator provides an
uniform high-level hint syntax for them as well:

1 mesh.verts.place({'x' : ti.f32})
2 mesh.edges.place({'y' : ti.f32})
3 mesh.cells.place({'z' : ti.f32})
4 bunny = mesh.build("./bunny.mesh")
5 w = ti.field(type=ti.f32,
6 shape=len(bunny.verts)) # external field
7 @ti.kernel
8 def foo():
9 # cache both mesh attributes and an external field
10 ti.mesh_local(bunny.edges.y, bunny.verts.x, w)
11 for c in bunny.cells:
12 for v in c.verts: v.x += c.z # C-V
13 for e in c.edges: e.y += c.z # C-E
14 for e in c.edges:
15 for v in e.verts: w[v.id] += c.z # C-E-V

5.2.2 Localizing Mesh Attributes Automatically. When users do not
provide any optimization hint to localize their cache attributes, our
compiler can help to cache the proper attributes automatically for
single relation access cases. We achieve this by analyzing users’
code using domain-specific knowledge. In general, we will first try
to satisfy the lowest occupancy constraint in GPU to determine
the maximum size of shared memory per block. We then localize
mesh attributes with different priorities. In the GPU backend, we
prioritize the attributes involved in store operations first because
they raise potential race conditions. We order the other attributes by
their load frequency – it is more likely to cache the more frequently
accessed attributes. In the CPU backend, we only cache the atomic-
operation-related attributes. Detailed implementations are discussed
in Section 6.2.

5.3 Memory Ordering Management
While mesh attribute localization brings a significant performance
improvement by exploiting data locality using shared memory, mov-
ing the attributes between global memory and shared memory still
has a non-negligible overhead. In the prologue and epilogue passes
for attribute localization, the mapping from the local index space
to the global index space is out-of-order as shown in Figure 6 (a),
making the data ordering inconsistent between the shared memory
and the global memory. We want a coalesced global memory access
so that each access brings a big chunk of data to the shared memory
at once.
Our compiler can reorder the global memory layout, aligning it

with the local index space. To be more specific, we sort the global
data attributing using the indices of the patches as the primary key
and using the local indices within each patch as the secondary key.
The ribbon elements are ignored during this sorting. By storing the
mesh attributes in the global memory with the reordered layout, we
can maximize the memory throughput as shown in Figure 6.
However, the reordered memory layout is not a silver bullet for

all mesh attributes. First, each mesh attribute may be visited from
different mesh-for loops that prefer different orders. Second, the
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Block3 Shared Memory

Local-to-Global Index Mapping

Natural Global Memory Order

Block1 Shared Memory Block2 Shared Memory

Block3 Shared Memory

Reordered Global Memory Order

Block1 Shared Memory Block2 Shared Memory

Coalesced Read Local-to-Reordered Index Mapping

(a)

(b)

Fig. 6. Fetching data attributes from (a) the naturally-ordered global mem-
ory, or from (b) the reordered global memory. The reordered layout allows
us to bring a bigger chunk of data into shared memory at once. The lighter-
colored blocks in the shared memory represent the ribbon elements.

mesh attributes may need to interact with external non-mesh data
ordered naturally. We, therefore, provide global memory reordering
only as an option in the mesh definition phase. Users can experiment
with different reordering schemes without changing the computa-
tion. For example, if we want to reorder the bunny.verts.vel and
the bunny.verts.force while keep the order bunny.verts.pos as
is, we only need to modify the line 3-5 in the mesh data definition
from Section 4.1 as follows:

1 mesh.verts.place({'pos' : ti.math.vec3}, reorder=False)
2 mesh.verts.place({'vel' : ti.math.vec3,
3 'force' : ti.math.vec3}, reorder=True)

We can also reorder the mesh attributes defined on other types
of elements:

1 mesh.cells.place({'B' : ti.math.mat3,
2 'w' : ti.f32}, reorder=True)

The default memory ordering for each attribute is the natural
order. Note that users do not need to worry about the reordered in-
dices even they want to perform index-based queries like mentioned
in Section 4.3. Our compiler manages the reordering mappings im-
plicitly. The memory ordering management is fully decoupled with
computation code. Together with the mesh_local decorator, users
can use these optimization hints to swiftly exploit the different
memory orderings and different cached attributes at the same time.
We refer to Section 7.3 to see the influence of memory orderings.

6 IMPLEMENTATION
This section presents the implementation of our compilation system,
which abstracts the mesh-based operations and transforms the mid-
level intermediate representations into the optimized executable
low-level instructions for different architectures.
Our system is implemented upon Taichi [Hu et al. 2019] and its

hierarchical static-single assignment (SSA) intermediate representa-
tion (IR) system.We extend the IR system for mesh-based operations.

AST Lowering & Type Checking

Atomic Removal

Auto Local Analyzer & 
Mesh Attributes Localization

Mesh-For (Frontend)

Mesh Metadata

(Mesh) 
Access Lowering

Simplification

Auto-Parallelization & LLVM-IR 
Codegen

X64/ARM 
CPUs CUDA

Patcher User Input 
Topology

Fig. 7. The pipeline of our mesh compiler. The black arrows represent our
mesh domain-specific IR transformation flow, and the red arrows indicate
the use of patch-based mesh metadata.

The key components of our compiler include a localization trans-
formation to optimize the attribute access, a mesh access lowering
transform, and a parallel code generator. We also extend the atomic
demotion and a simplification transform to remove the redundant
accesses to mesh attributes and relations. Our system partitions the
input mesh to generate the local relations and the index mappings
for each patch. We call them the mesh metadata, which would be
managed by the compiler implicitly. The compilation pipeline is
summarized in Figure 7.

In the end, our code generation emits the LLVM IR [Lattner and
Adve 2004] by just-in-time compilation. The IRs from our compiler
would be compiled along with other original Taichi IRs to multiple
backends such as x64, ARM64, and CUDA.

6.1 Domain-specific Intermediate Representations
The native Taichi IR statements only support grid-based operations,
and they are not suitable to perform domain-specific optimizations
on meshes. In this section, we introduce two important new IR
statements for mesh-based operations.

Relation Access. The relation access should be highly abstracted to
perform compiler-level analysis and transformations. We introduce
the RelationAccessStmt statement to unify the representation for
accessing both static relations and dynamic relations. Our language
exposes a reference-style relation access interface in the frontend
(e.g., for v in e.verts). Our compiler keeps track of the indices.
Since the input mesh are partitioned into patches, we only need
the local indices to visit the local relations. To be more specific,
our RelationAccessStmt takes its from-end element’s local index as
input and return the local index of its to-end element.

Index Space Conversion. The RelationAccessStmt statementworks
only on the local index space for all relations inside a patch. We,
therefore, introduce the IndexConversionStmt statement to con-
vert the local indices to global ones. Note that we allow the users to
choose a reordered globalmemory layout. Our IndexConversionStmt
will also convert the local indices to the reordered global indices
if necessary. We also reuse the GlobalPrtStmt in Taichi to visit the
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global memory. The GlobalPrtStmt will return us the global mem-
ory address of a mesh attribute once it gets the global index of that
attribute using IndexConversionStmt.

6.2 Localization Transformation
Our compiler localizes the mesh data using our domain-specific IRs.
We separate the localization process into two stages: an analysis
stage and a transformation stage.
The analysis stage decides which attributes shall be cached. We

will try to cache the hinted attributes whenever is possible. In this
case, we can loop for the mesh_local decorator to locate those at-
tributes. If the compiler can not find any user-specified attributes
in a mesh-for loop, it will collect all the attributes involved in
the IndexConversionStmt statements. We evaluate the priorities
of these attributes based on their access types and frequencies. For
example, we will prioritize the attributes involved in atomic writes
because the atomic operations in global memory are expensive. Due
to the trade-off between the shared memory size and the occupancy,
we set the lowest occupancy which activates at least 2 blocks per
streaming multiprocessor as the constraint. We use this constraint
to estimate the maximum shared memory size per block and cache
the mesh attributes according to their priorities.
The transformation stage is used to turn the global memory ac-

cesses into local ones. In this stage, the wanted attributes will first
be grouped together based on their element type. The compiler
will then generate the prologue and epilogue passes for each mesh
element type and its related attributes. The prologue pass loads the
attributes into shared memory before the computations, whereas the
epilogue pass writes the computed attributes back to global memory.
To ensure data consistency, we use __syncthreads after prologue
and before epilogue for the GPU backend.
The localization process is illustrated as the “Auto Local Ana-

lyzer & Mesh Attributes Localization” block in Figure 7. Since all
the wanted attributes are in shared memory after the localization
process.We safely drop the IndexConversionStmt statements and re-
place each GlobalPtrStmt statement to another localized statement
BlockLocalPtrStmt in Taichi. The BlockLocalPtrStmt statement
returns the address of the shared memory for the GPU backend.
Instead of explicitly controlling caches as we do on GPUs, on CPUs
we allocate a memory buffer small enough to fit in L1 data cache,
and let the hardware control data residency inside the buffer. The
BlockLocalPtrStmt statement will return the address of the small
memory buffer to perform frequent reads and writes. Since we fre-
quently read/write to data in the buffer, they will reside in L1 data
cache with high probability, serving a similar role as data in GPU
shared memory.

6.3 Access Lowering
In this access lowering process, all the mesh-related statements such
as RelationAccessStmt and IndexConversionStmt statements are
transformed into lower-level statements that compute the memory
address offset and visit the physical memory, guided by the mesh
metadata. The lowered memory access may produce redundant low-
level statements, and we rely on another simplification process to
eliminate them.

6.4 Mesh Metadata
The compiler workflow aforementioned depends on the mesh meta-
data as illustrated using the bold red arrows in Figure 7. The meta-
data, including the index mappings, local relations, and element
numbers, are generated for each patch. The index mappings book-
keep the index transformation. The local relations store the indices
of the from-end and to-end elements of relations in the local index
space. For local static relations, we only need to pack the values
together because each from-end element has a static number of
neighbors of to-end neighbors. For local dynamic relations, we use
two packed arrays for both the values and the offset. We also keep
the number of owned elements and total elements for each element
type in the metadata. We primarily use the number of owned ele-
ments for each patch to decide the range of a mesh-for loop. We also
use these sizes to locate other metadata because we use a packed
mode to store them patch-by-patch. The packed storage scheme of
the metadata aligns with the order of mesh-for loops. This further
helps reduce the fetching overhead for these metadata.

7 DESIGN VALIDATIONS
In this section, we validate our compiler design decisions by testing
different options. We choose spring-force and vertex normal com-
putations as two simple micro-benchmarks in this section. Because
these experiments have relatively simple computation kernels, the
performance of these experiments can better reflect the memory
access overhead under different settings.

7.1 Choice of Mesh Partitioning Strategies
Mesh partitioning is an important pre-computation step for our com-
piler. In this section, we validate our mesh partitioning algorithm
and discuss the influence of patch size.

We set up twomass-spring simulation experiments with a tetrahe-
dron mesh consisting of 226, 857 vertices and 1, 231, 193 edges, and a
triangle mesh consisting of 172, 974 vertices and 518, 916 edges. We
measure the spring force evaluation time on those two meshes. For
each experiment, we use two different styles to compute spring force:
one scattering style implementation involving a static relation query
(EV in this case), and one gather style implementation involving
a dynamic relation query (VV in this case). We test two different
patching algorithms: k-means and our greedy-based method with
various of patch size options.

As we can see from Figure 8, our greedy algorithm produces com-
parable results for triangle mesh, and improves the performance by
approximately 20% for tetrahedron mesh, compared with k-means.
The performance curve aligns with the normalized theoretical global
memory access 𝛾 for each mesh. That confirms our hypothesis in
Section 5.1 that fewer ribbon elements leads to higher performance.
Our compiler generally prefers larger patch sizes as larger patches
tend to have fewer ribbon elements. But larger patches also reduces
the number of resident blocks per stream-multiprocessor. We pick
2048 as the default patch size for our compiler (and also used this
default size to produce all other experiments in this paper). Note
that we do not need to compute any relation during run time, the
increase of patch size will affect only occupancy but not the relation
acquisition time.
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Fig. 8. The performance (top) and the normalized theoretical global memory
access𝛾 (bottom) with respect to different patching strategies and different
patch sizes.

7.2 Choice of Localized Data
The key idea to improve the performance for mesh-based operations
is to improve data locality by moving data to on-chip memory before
they are needed for computations. Our system localizes only the
mesh attributes but not the relations as described in Section 5.2.
We validate this strategy using the volumetric mass-spring system
simulation described in Section 7.1.
We test four different localization strategies: (1) leaving every-

thing to hardware scheduling, (2) caching relation data only, (3)
caching attribute data only, and (4) caching both relation and at-
tribute data. We run each experiment for 25, 000 times and report the
average timing spent on the force computation kernel. The results
are shown in Figure 9.

Caching nothing strategy has the slowest performance. This meets
our expectation that hardware scheduling is not enough for mesh-
based operations. The unstructured memory access leads to frequent
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Fig. 9. Timings for different caching strategies. We tried cache nothing
and leave everything to hardware scheduling, cache relation only, cache
attribute(s) only and cache both relation and attribute.

cache misses. And the data pre-fetched by hardware is not enough
to revolve these cache misses. This behavior calls for a specifically
tailored solution for meshes.
Caching relations strategy helps improving the performance. To

be more specific, it helps the performance more for dynamic re-
lations. We prepared the pre-computed relations in compile-time,
every relation is loaded only once in this example and most relation
loading patterns align with their memory ordering. This coherent
relation loading applies to most mesh-based applications as well.
The static relation visits knows the addresses and offsets because
every element has known to-end neighbors in these relations. (e.g.
an edge E must have two vertices neighborsV .) Different threads
inside a patch can visit global memory in a coalesced batch even if
relations are not cached by the compiler. That is why the improve-
ment from caching relations for static relations is marginal. On the
contrary, different threads are not able to load dynamic relations
from global memory in coalesced visits because the number of to-
end elements are not fixed. Our implementation of this caching
relation strategy pre-fetchs relations from global memory to shared
memory in batches regardless of the relation types. So caching dy-
namic relations has a more significant performance gain. It is worth
mentioning that this caching relation strategy is the closest strategy
to RXMesh. The only difference is that we pre-compute relations in
compile-time. RXMesh, on the contrary, performs relation compu-
tations on the fly, so it needs to access multiple relation tables in
run-time. Hence caching relations becomes an important design for
RXMesh, but it is not the best strategy for our system.
Caching attributes strategy is the most efficient one in our test

cases. This is based on our observation that mesh attributes are often
accessed in unstructured ways, and eachmesh attribute is very likely
to be accessed by multiple local computations. For example, the
position attribute of a vertex in a mass-spring system may be visited
by all of its vertex/edge neighbors to compute spring forces. Caching
these attributes not only makes their load and store operations
local, but also reduces data races among patches. When writing
back attributes to global memory after all local computations, only
those attributes of ribbon elements may encounter write conflicts.
Therefore, caching attributes can provide us a significant amount
of performance gain.

Caching both attributes and relations strategy seems to be a perfect
solution in our first thought. However, the size of shared memory
is limited so larger shared memory consumption will lead to fewer
resident blocks per stream-multiprocessor, lowering occupancy in
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Fig. 10. Timings for different memory orderings. We use the same settings
as in Section 8.2 to compute the vertex normals. We set reorder=True for
the reordered cases.

GPU. As shown in the last bar in Figure 9, this strategy is less
competent compared to caching attributes only.

These experiments indicate that on the one hand, caching proper
data into shared memory will improve the performance for mesh-
based operations, while on the other hand, abusing shared memory
with everything we can cache can hurt the performance too. We
observe that the size of relations and attributes are usually with the
same order of magnitude in most of our applications. Therefore, we
decide to only cache data attributes but not relations. We also allow
users to try different cached attributes by playing with the optimiza-
tion hint mesh_local, in case they want to fine-tune a perfect set of
cached attributes.

7.3 Influence of Memory Orderings
We cache mesh attributes to accelerate the data access for computa-
tions in mesh-based operations. However, our compiler still need to
move the attributes between global and shared memory in prologue
and epilogue stages. A good memory ordering will help to accelerate
our data exchange to coalesced read and writes. Here we show our
performance under different memory orderings using a vertex nor-
mal application. The tested surface meshes are shown in Figure 14
and Figure 15. To change memory ordering from natural order to
a patch-aligned order decided by our compiler, we only need to
set reorder=True when defining the mesh data type as described
in Section 5.3. Figure 10 shows that our system takes advantage
of coalesced data access from the global memory. Note that the
speedup varies among different meshes, one might want to experi-
ment with different memory ordering options. Our compiler allows
users to explore different memory orderings for different attributes
as described in Section 5.3 without changing the computation code.

8 RESULTS
In this section, we demonstrate several applications implemented in
our system, comparing our system with other mesh-based libraries,
and high-performance implementations using other languages.

We collect the triangle meshes from Thingi10K [Zhou and Jacob-
son 2016] and use TetGen [Si 2015] to generate the corresponding
tetrahedron meshes. We also use OpenVDB [Museth et al. 2013] to
generate some more structured triangle meshes. We use the remesh
geometry node in SideFX Houdini to produce meshes with different
resolutions.
The mesh-grid hybrid simulation shown in Figure 1 runs on a

single NVIDIA A100 Tensor Core GPU with 80GB of device memory.
All other GPU experiments are tested on Nvidia RTX 3090with 24GB
device memory. The GPU timings are measured using the NVIDIA
profiling tool (nvprof), which keeps track of the kernel time. The
CPU experiments are executed on an 11th Gen Intel(R) Core(TM) i7-
11700F with 8 cores at 2.50GHz and 64GB of main memory. Detailed
run time and compile time for all all examples in this section can be
seen in Table 1 and Table 2 in Appendix A.
To make the comparisons fair, we disable memory reordering

for all experiments in this section. We also fine-tuned the hyper-
parameters such as block-dim for both our system and all other
baseline methods independently in every experiment to ensure
fairness.

8.1 Mass-Spring System
We implemented a mass-spring system with both explicit and semi-
implicit [Baraff and Witkin 1998] time integration schemes. For the
explicit integration, the key step is to compute the force for each
vertex. We tested two versions to perform the force evaluation. The
first version is based on a scattering-style operation using the EV re-
lation where we loop over the edge elements of the simulated model,
compute the spring force for each edge and scatter the force to the
endpoints. This is an intuitive implementation because we only
need to compute the spring force once for each spring. The applied
spring forces to its endpoints are equal in magnitude and opposite
in direction as described in Newton’s third law of motion. Another
way to evaluate forces is based on a gathering-style operation using
theVV relation where we loop over all the vertex elements and
compute the force for each vertex based on the positions of all its
neighbor vertices. Although this method would require two force
evaluations for every spring, it avoids write-conflicts hence can be
more efficient in many cases. We implemented the implicit integra-
tion scheme using 10 matrix-free conjugate gradient iterations per
frame. By matrix-free, we mean that we do not store the Hessian
matrix anywhere, but evaluate the Hessian blocks on the fly during
the matrix-vector multiplication inside the CG iterations instead.We
used gathering-style operations to perform both the force evaluation
and the matrix-vector multiplication for the implicit integration.
We generated varying sized bunny models (from 1 × 104 to 5 × 106
vertices) and ran all the experiments using our system and other
programming languages or data structures on GPU as shown in
Figure 11. Note that Simit [Kjolstad et al. 2016] does not care about
whether an operation scatters or gathers the data attributes, because
it assembles its matrix directly from the graph representation of
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Fig. 11. The GPU timings of simulating a surface-only bunny model with different resolutions and integration schemes collapsing onto the ground. Left: The
bunny model. Right: The GPU timings of our system, CUDA, Taichi, RXMesh, and Simit on different cases. We apply a scattering-style force computation
scheme using the EV relation and a gathering-style force computation scheme using the VV relation to implement the explicit time integration. We use the
gathering-style scheme to implement the implicit integration where we applied 10 matrix-free conjugate gradient iterations to solve the linear system.

Fig. 12. The CPU timings of our system with eight threads, our system with
one thread, and Simit for the same bunny example shown in Figure 11. The
force is computed with gathering-style operations in our system.

a mesh. Therefore the performance for Simit is the same for both
scattering and gathering styles in the explicit integration. Our sys-
tem achieves the best performance in all the experiments. For high
resolution mesh models, our system is more than twice faster (2.3×
for explicit simulations and 2.7× for implicit simulations) compared
to the most efficient competitor on GPU (RXMesh).

We also ran our mass-spring simulations on CPU, comparing the
CPU performance of our system and Simit which is the state-of-the-
art mesh compiler on CPU. The results are shown in Figure 12. Our
system shows its advantage as the size of the mesh increases. Our
compiler performs an order of magnitude faster than Simit for all
tested meshes. Because Simit runs with only one thread, we tested
our system on one thread as well. The gap between the dark green
curve and dark golden curve in Figure 12 indicates that the CPU
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Fig. 13. The GPU performance of the vertex normal examples. We compare
our system with an optimized hardwired CUDA implementation provided
by the authors of RXMesh and an RXMesh implementation.

performance of our system comes not only frommulti-threading, but
from the well-exploited data locality too. In high-resolution cases,
the single-threaded and eight-threaded versions of our system are
2.46× and 16.11× faster than Simit respectively.

8.2 Vertex Normal
Vertex normal computation is a simple but typical mesh-based oper-
ation. It is widely used to render deformable objects. This operation
first loops over all the surface triangle elements and gathers the
positions from its vertices, then computes the surface normal using
a cross-product and scatters the normal to the vertices using the
FV relation. We implemented the weighted vertex normal [Max
1999] algorithm using our language. We pick several high-resolution
surface models for this experiment which are compiled in Figure 14

ACM Trans. Graph., Vol. 41, No. 6, Article 252. Publication date: December 2022.



252:14 •

Fig. 14. An OpenVDB-reconstructed mesh we used in the vertex normal
example.

goyle

vlamp

venus lucy buddha

model #verts. #edges #faces
buddha 4, 059, 506 12, 179, 136 8, 119, 424
goyle 6, 291, 458 18, 874, 368 12, 582, 912
lucy 20, 237, 202 60, 711, 600 40, 474, 400
venus 25, 232, 882 75, 698, 640 50, 465, 760
vlamp 9, 559, 520 28, 678, 554 19, 119, 232

Fig. 15. The surface models we used in the vertex normal and geodesic
distance applications.

and Figure 15. We compared our system against RXMesh [Mahmoud
et al. 2021], as well as an optimized hardwired CUDA implementa-
tion also provided by the authors from RXMesh. In this example,
both our system and the CUDA implementation use pre-computed
FV relations and store them in global memory. RXMesh saves FE
and EV relations in shared memory and computes the wanted FV
on the fly. As shown in Figure 13, our system outperforms both the
optimized CUDA implementation and RXMesh.

8.3 Geodesic Distance
The geodesic distance application computes the shortest distance
between a selected vertex and all other vertices on a surface. We
implemented the minimalistic parallel algorithm [Calla et al. 2019]
to approximate the geodesic distance. The algorithm comes with two
passes. In the first pass, it generates a topological level set around
the selected vertex. In the second pass, it iteratively activates a small
set of vertices according to the level set and updates the geodesic
distance and error of these vertices in parallel. The second pass
keeps activating new vertices and deactivating old vertices with

Fig. 16. Geodesic distance. Left: The normalized geodesic distance to a
selected vertex colored in yellow, visualized from blue (short) to red (long).
Right: The performance of our system and RXMesh with different input
meshes.

low errors. We compared our system with RXMesh using the same
meshes used in the vertex normal application as shown in Figure 15.
Our system has a significant speedup compared with RXMesh, as
shown in Figure 16.

8.4 Projective Dynamics
Projective dynamics [Bouaziz et al. 2014] is an efficient simulation
framework for elastic materials. Wewrote an elastic body simulation
as shown in Figure 17. Instead of using a pre-factorized system
matrix in the vanilla implementation of projective dynamics on
CPU, we decided to pre-compute the system matrix and perform
5 local-global iterations per frame and 30 conjugate gradient (CG)
iterations per global step, taking full advantage of the parallelism
on GPU. The bottleneck of this simulation is mostly on the matrix-
vector multiplications inside the CG iterations. Since our compiler
provides a flexible interface to let users store data attributes on
any types of mesh elements, we place the sparse system matrix of
projective dynamics on both vertices and edges. The diagonal terms
of the system matrix are stored on vertices and off-diagonal terms
are stored on edges. Our system achieves a 34 fps simulation in
real-time as shown in Figure 17.

Our conjugate gradient implementation involves 1 matrix-vector
multiplication, 2 vector dot-products and 3 vector additions every
iteration. Synchronization time is also non-negligible especially
for matrix-vector multiplication and dot-products. The pie chart
in the left of Figure 17 reports the cost breakdown to simulate one
frame of projective dynamics using our system where mesh-based
operations (including force computation and part of matrix-vector
multiplication) takes 42.73% of the run time. We also implemented
a Taichi version of the same projective dynamics algorithm as a
baseline solution. Our system achieves 1.61× speedup compared
to Taichi for these mesh-based operations and 1.26× speedup for
overall simulation. In this projective dynamics example, our system
accelerates the simulation from 27 fps to 34 fps to enable real-time
interactivity at the cost of 18.4 seconds in compiling.
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Frame 1 Frame 15 Frame 280Run-time breakdown Frame 240

Fig. 17. An elastic body simulation of a deer model with 194, 267 vertices,
1, 047, 693 edges and 701, 496 cells based on projective dynamics (PD). The
simulation runs 5 PD iterations per frame and 30 CG iteration per global
step at 34 fps in real-time. Left: Run-time cost breakdown to simulate one
frame of PD using our system.Right: The PD solver recovers the deer model
from a randomly initialized state to its rest pose quickly.

8.5 XPBD Cloth Simulation
We implemented an array of cloth simulation using eXtended Posi-
tion Based Dynamics (XPBD) [Macklin et al. 2016]. We assign 10, 000
random vertices for each cloth independently and tessellate it using
Delaunay triangulation. The simulation runs on 100 pieces of cloth
consists of 1, 000, 000 vertices, 2, 997, 248 edges and 1, 997, 348 faces
in total. We use spring lengths to set up stretch constraints and
use dihedral angles to set up bending constraints as described in
PBD [Müller et al. 2007]. Each cloth is assigned with unique stretch
and bending compliance as shown in the top of Figure 18.
As a result, we achieve 0.725s per frame to run 167 substeps

where each substep consists of 5 nonlinear Jacobi iterations. We
iterate through all the stretch and bending constraints in every
Jacobi iteration. Each stretch constraint is updated with an EV
relation and each bending constraint is updated with an EF relation
to compute the dihedral angle and an FV relation to scatter the
vertex displacement. The stretch and bending constraints update
takes 35.6% and 53.5% of the simulation time respectively.
We compare our system with a Taichi implementation. Our sys-

tem achieves 1.27× speedup for stretch constraints, 1.60× speedup
for bending constraints, and 1.42× speedup for overall simulation
compared to Taichi. We also compare our system with an RXMesh
implementation. Since RXMesh does not support multiple relation
access within one kernel, we are not able to compare the perfor-
mance of bending constraints. Our system achieves 3.75× speedup
for stretch constraints compared to RXMesh as shown in the bot-
tom of Figure 18. In this example, the cloth elements are implicitly
grouped by the cloth ID, improving the default data locality. This
dilutes the advantages gained from patch-based representations
including our system and RXMesh. Nevertheless, our system still
performs better compared with both Taichi and RXMesh.

8.6 Mesh-Grid Hybrid Simulation
To exploit the scalability and flexibility of our system, we imple-
mented soft body simulation using material point method with

corotated linear elastic materials. The force model is evaluated from
a Lagrangian point of view using meshes [Jiang et al. 2015]. We
set 17, 010 armadillos in the scene with 222, 048, 540 vertices and
713, 739, 600 cells in total. In each time step, we first compute the
hyper-elastic force for each vertex using mesh information, then
interpolate the momentum and mass onto the grid. Once the ve-
locities on the grid are computed, we interpolate them back to the
mesh vertices using MLS-MPM [Hu et al. 2018a]. We used a Taichi
implementation of this simulation as our baseline reference. Taichi
takes 2.9 minutes on average to produce 300 substeps for every
frame. Within each frame, the force computation step takes 50 sec-
onds which is 28.7% of total simulation time. Our system achieves
2.58× speedup for this mesh-based operation, reducing its time to 19
seconds per frame. As a result, our system achieves 1.21× speedup
for overall simulation compared to Taichi and takes 2.4 minutes on
average to produce 300 substeps for this mesh-grid hybrid simula-
tion. Our system takes 3.5 minutes to compile and saves 2.5 hours
at run time to generate a 10-second video for this high-resolution
simulation.

8.7 Performance for Different Mesh Operations
We tested the performance of our method using 32 different mesh-
based operations which is the composition of 16 different types of
relations and 2 attribute accessing styles as shown in Figure 19. In
all experiments, we define a data attribute sized 40 bytes for all
elements in a mesh including vertices, edges, faces, and cells. For
the gathering-style access, we loop over the from-end elements of a
relation, and accumulate their to-end neighbors’ 40-byte attribute to
themselves. For the scattering-style access, we loop over the from-
end elements, and scatter their 40-byte attributes to their to-end
neighbors.

Fig. 18. Top: Simulating 100 pieces of cloth with different consisting of
1, 000, 000 vertices, 2, 997, 248 edges and 1, 997, 348 faces using XPBD. Bot-
tom: Simulation runtime for each substep using our system, Taichi and
RXMesh.

ACM Trans. Graph., Vol. 41, No. 6, Article 252. Publication date: December 2022.



252:16 •

model #verts. #edges #faces #cells
armadillo 1, 753, 678 9, 198, 712 13, 482, 531 6, 037, 496
bunny 1, 783, 121 9, 444, 504 13, 916, 746 6, 255, 362
deer 2, 089, 717 11, 223, 724 16, 645, 666 7, 511, 658
lucy 1, 065, 930 5, 770, 116 8, 588, 004 3, 883, 817

Fig. 19. Speedup of our method over a baseline Taichi implementation for all
query operations on different input meshes. The gathering- and scattering-
style data accesses are colored in green and blue respectively. The models
are listed in the bottom.

We wrote a Taichi implementation as the baseline because we
built our compiler upon Taichi. Any performance gain or loss in Fig-
ure 19 comes from our mesh-oriented modifications. These micro-
benchmarks validate that our improvements upon Taichi brings a
considerable performance gain.
The experiments also show that our compiler generally excels

at most mesh-based operations regardless of the queried relations
or the attribute accessing styles. A precise observation we made
from Figure 19 is that our system accelerates the scattering-style
operations more compared with the gathering-style ones. That is
because these scattering-style operations are very likely to cause
data races. Our compiler stores the mesh attributes back to global
memory only during the epilogue pass so that most inter-patch data
conflicts are avoided.

9 LIMITATIONS AND FUTURE WORK
Currently, the topology of input meshes needs to be static, so that
we can generate the compiler metadata before run time. Supporting
meshes with dynamically modified topology is an exciting research
problem. Also, our test cases may not cover all common mesh types.
We would like to test more types of meshes in the future.

We focus on local mesh operations for now, where we assume
all computations happen on the one-ring neighborhood of a mesh
element. Users need to perform the mesh-for operations multiple
times to pass the information beyond one-ring neighbors. Collisions
and contacts involve lots of run-time information, hence they are
hard to optimize using our compiler. We use an external array to
store dynamically generated relations due to collisions, and we visit

the contact information using a regular range-for instead of our
mesh-for loops. Our current system accelerates only the static-mesh-
related computation and does not affect dynamic relations generated
by contacts. We plan to investigate the possibility of supporting
higher-order relations and dynamically generated relations in the
future.
The patching algorithm is another promising direction to im-

prove. We observe that our compiler prefers lower ribbon ratios to
achieve better performance. But our patching algorithm remains a
raw approximation to achieve this goal. We plan to investigate some
other graph partitioning algorithms such as sparse cut to generate
better patches. Our current patching algorithm is implemented on
CPU. This causes fairly long compile time if the compiler cannot
be warm-started using cached metadata as reported in Appendix
A. We plan to accelerate the mesh partitioning process with a GPU
partitioning implementation.

We build our system upon the Taichi programming language and
it would be a promising line of future work to integrate Taichi’s
automatic differentiation [Hu et al. 2020] into our mesh compiler
via source code transformation. We believe this potential extension
would benefit many deep learning tasks on meshes.

Our compiler supports multi-core CPU and GPU backends for
now. Extending the supported backends to other parallel architec-
tures such as multi-GPU or MPI would be an interesting line of
improvement as well. We are also interested in exploring other
GPU-based code generations, for example, SPIR-V and OpenCL.

10 CONCLUSIONS
We present MeshTaichi, a new compiler to make mesh-based op-
erations efficient. We achieve high performance by exploiting data
locality for mesh attributes. To be more specific, we partition meshes
into patches and transform wanted attributes for each patch to on-
chip memory so that the mesh-based operations can access their
data faster. Our compiler provides an intuitive programming inter-
face where users can program concise and intuitive code without
worrying about mesh relations and attribute indices. Our compiler
also decouples low-level optimization options from computation,
enabling users to exploit different data orderings and cached at-
tributes without changing the computation. Our compiler supports
various mesh operations for both triangle and volumetric meshes
and generates code for both CPU and GPU backends. As a result,
our CPU solution is an order of magnitude faster compared to the
best mesh compiler on CPU Simit; our GPU solution is 1.4 to 6 times
faster than the state-of-the-art mesh data structure RXMesh.

ACKNOWLEDGMENTS
We thank Mingrui Zhang and Chuqiao Zhou for early-stage brain-
storming, Xiuqi Yang for performance profiling, Jihua Liu and Shumu
Xu for providing the OpenVDB-reconstructed mesh, Yun (Raymond)
Fei and Ming Gao for discussions on atomic operations, Ahmed H.
Mahmoud for answering our questions about RXMesh, and Haidong
Lan and Bo Qiao for proofreading. We also thank the anonymous
reviewers for their constructive feedback.

ACM Trans. Graph., Vol. 41, No. 6, Article 252. Publication date: December 2022.



MeshTaichi: A Compiler for Efficient Mesh-based Operations • 252:17

REFERENCES
David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings

of the 25th annual conference on Computer graphics and interactive techniques. 43–54.
Bruce G Baumgart. 1972. Winged edge polyhedron representation. Technical Report.

STANFORD UNIV CA DEPT OF COMPUTER SCIENCE.
Gilbert Louis Bernstein and Fredrik Kjolstad. 2016. Perspectives: Why New Program-

ming Languages for Simulation? ACM Transactions on Graphics (TOG) 35, 2 (2016),
1–3.

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito, Matthew
Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL for physical simulation on
CPUs and GPUs. ACM Trans. Graph. 35, 2 (2016), 21:1–21:12.

Volker Blanz and Thomas Vetter. 1999. A morphable model for the synthesis of 3D faces.
In Proceedings of the 26th annual conference on Computer graphics and interactive
techniques. 187–194.

Mario Botsch, Stephan Steinberg, Stephan Bischoff, and Leif Kobbelt. 2002. Openmesh-a
generic and efficient polygon mesh data structure. (2002).

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective dynamics: Fusing constraint projections for fast simulation. ACM trans-
actions on graphics (TOG) 33, 4 (2014), 1–11.

Ajay Brahmakshatriya, Emily Furst, Victor A Ying, Claire Hsu, Changwan Hong, Max
Ruttenberg, Yunming Zhang, Dai Cheol Jung, Dustin Richmond, Michael B Taylor,
et al. 2021. Taming the Zoo: The unified GraphIt compiler framework for novel
architectures. In 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 429–442.

Luciano A Romero Calla, Lizeth J Fuentes Perez, and Anselmo A Montenegro. 2019.
A minimalistic approach for fast computation of geodesic distances on triangular
meshes. Computers & Graphics 84 (2019), 77–92.

Swen Campagna, Leif Kobbelt, and Hans-Peter Seidel. 1998. Directed edges—a scalable
representation for triangle meshes. Journal of Graphics tools 3, 4 (1998), 1–11.

He Chen, Hyojoon Park, Kutay Macit, and Ladislav Kavan. 2021. Capturing Detailed
Deformations of Moving Human Bodies. arXiv preprint arXiv:2102.07343 (2021).

Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H Barr. 1999. Implicit fairing
of irregular meshes using diffusion and curvature flow. In Proceedings of the 26th
annual conference on Computer graphics and interactive techniques. 317–324.

Zach DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Medina,
Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy, Eric
Darve, Juan Alonso, and Pat Hanrahan. 2011. Liszt: A Domain Specific Language for
Building Portable Mesh-based PDE Solvers. Proceedings of 2011 SC - International
Conference for High Performance Computing, Networking, Storage and Analysis 3, 9.

Antonio DiCarlo, Alberto Paoluzzi, and Vadim Shapiro. 2014. Linear algebraic repre-
sentation for topological structures. Computer-Aided Design 46 (2014), 269–274.

Yu Fang, Minchen Li, Ming Gao, and Chenfanfu Jiang. 2019. Silly rubber: an implicit
material point method for simulating non-equilibrated viscoelastic and elastoplastic
solids. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–13.

MingGao, XinleiWang, KuiWu, Andre Pradhana-Tampubolon, Eftychios Sifakis, Yuksel
Cem, and Chenfanfu Jiang. 2018. GPU Optimization of Material Point Methods.
ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 4 (2018), 102.

Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the manipulation of general
subdivisions and the computation of Voronoi. ACM transactions on graphics (TOG)
4, 2 (1985), 74–123.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-
Kelley, and Frédo Durand. 2020. DiffTaichi: Differentiable Programming for Physical
Simulation. ICLR (2020).

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chen-
fanfu Jiang. 2018a. A moving least squares material point method with displacement
discontinuity and two-way rigid body coupling. ACMTrans. Graph. (Proc. SIGGRAPH
Asia) 37, 4 (2018), 150.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand.
2019. Taichi: a language for high-performance computation on spatially sparse data
structures. ACM Transactions on Graphics (TOG) 38, 6 (2019), 201.

Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang
Dai, William T. Freeman, and Frédo Durand. 2021. QuanTaichi: A Compiler for
Quantized Simulations. ACM Trans. Graph. 40, 4, Article 182 (July 2021), 16 pages.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018b. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018), 60–1.

Markus Ihmsen, Nadir Akinci, Markus Becker, and Matthias Teschner. 2011. A parallel
SPH implementation on multi-core CPUs. In Computer Graphics Forum, Vol. 30.
Wiley Online Library, 99–112.

Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic elastoplasticity
for cloth, knit and hair frictional contact. ACM Transactions on Graphics (TOG) 36, 4
(2017), 1–14.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1–10.

Petr Kadleček, Alexandru-Eugen Ichim, Tiantian Liu, Jaroslav Křivánek, and Ladislav
Kavan. 2016. Reconstructing personalized anatomical models for physics-based

body animation. ACM Transactions on Graphics (TOG) 35, 6 (2016), 1–13.
Lutz Kettner and Fernando Cacciola. 2006. Halfedge data structures. CGAL User and

Reference Manual 3 (2006).
Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David I. W. Levin, Shinjiro

Sueda, Desai Chen, Etienne Vouga, Danny M. Kaufman, Gurtej Kanwar, Wojciech
Matusik, and Saman Amarasinghe. 2016. Simit: A language for physical simulation.
ACM Trans. Graph. 35, 2 (2016), 20:1–20:21.

Fredrik Berg Kjolstad and Marc Snir. 2010. Ghost cell pattern. In Proceedings of the 2010
Workshop on Parallel Programming Patterns. 1–9.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong
program analysis & transformation. In Code Generation and Optimization.

Tiantian Liu, Adam W Bargteil, James F O’Brien, and Ladislav Kavan. 2013. Fast
simulation of mass-spring systems. ACM Transactions on Graphics (TOG) 32, 6
(2013), 1–7.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-based
simulation of compliant constrained dynamics. In Proceedings of the 9th International
Conference on Motion in Games. 49–54.

Ahmed H. Mahmoud, Serban D. Porumbescu, and John D. Owens. 2021. RXMesh: A
GPUMesh Data Structure. ACM Trans. Graph. 40, 4, Article 104 (July 2021), 16 pages.

Martti Mäntylä. 1987. An introduction to solid modeling. Computer Science Press, Inc.
Nelson L. Max. 1999. Weights for Computing Vertex Normals from Facet Normals. J.

Graphics, GPU, & Game Tools 4 (1999), 1–6.
Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position

based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109–118.

Ken Museth, Jeff Lait, John Johanson, Jeff Budsberg, Ron Henderson, Mihai Alden,
Peter Cucka, David Hill, and Andrew Pearce. 2013. OpenVDB: an open-source data
structure and toolkit for high-resolution volumes. In Acm siggraph 2013 courses.
1–1.

Rahul Narain, Matthew Overby, and George E Brown. 2016. ADMM⊇ projective
dynamics: fast simulation of general constitutivemodels.. In Symposium on Computer
Animation, Vol. 1. 2016.

Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM
Trans. Math. Softw. 41, 2, Article 11 (feb 2015), 36 pages.

Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids: a
practitioner’s guide to theory, discretization and model reduction. In Acm siggraph
2012 courses. 1–50.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically de-
formable models. In Proceedings of the 14th annual conference on Computer graphics
and interactive techniques. 205–214.

Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A scalable galerkin multigrid
method for real-time simulation of deformable objects. ACM Transactions on Graph-
ics (TOG) 38, 6 (2019), 1–13.

Cem Yuksel, Scott Schaefer, and John Keyser. 2009. Hair meshes. ACM Transactions on
Graphics (TOG) 28, 5 (2009), 1–7.

Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and
Saman Amarasinghe. 2018. GraphIt: A high-performance graph DSL. Proceedings of
the ACM on Programming Languages 2, OOPSLA (2018), 121.

Yili Zhao and Jernej Barbič. 2013. Interactive authoring of simulation-ready plants.
ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–12.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

A DETAILED PERFORMANCE FOR ALL EXAMPLES
We report the run time and compile time for different mesh-based
tasks in Table 1 and Table 2. The run timemeasures the costs of mesh-
related kernels to complete a geometry processing task (e.g. comput-
ing vertex normal) or to produce one time step for a physically-based
simulation task (e.g. computing force in mass-spring system). As
described in Section 5.1, our compiler partitions input meshes into
patches and prepare the relations for each patch during compile
time, we also cache these metadata into files. Our compiler will
look for metadata first to see whether it needs to be cold-started.
Our compiler re-computes all the metadata for changed meshes
under cold-start settings. Otherwise, it reads the metadata from files
directly. The cold-started and warm-started compile time columns
report the compile time for these two situations respectively.
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Table 1. Detailed Performance for the Mass-Spring Task in Figure 11

model #verts. #edges #faces #cells compile time compile time mesh-kernel run time per time step
(cold-started) (warm-started) (scattering) (gathering) (implicit)

1.1 × 104 3.1 × 104 2.1 × 104 - 0.91 sec 0.80 sec 0.007 ms 0.004 ms 0.308 ms
2.1 × 104 6.2 × 104 4.1 × 104 - 0.94 sec 0.84 sec 0.008 ms 0.006 ms 0.341 ms
4.1 × 104 1.2 × 105 8.3 × 104 - 1.11 sec 0.86 sec 0.013 ms 0.009 ms 0.477 ms
8.3 × 104 2.5 × 105 1.7 × 105 - 1.49 sec 0.97 sec 0.019 ms 0.015 ms 0.583 ms
1.7 × 105 5.1 × 105 3.4 × 105 - 2.29 sec 1.05 sec 0.040 ms 0.026 ms 0.912 ms
3.4 × 105 1.0 × 106 6.8 × 105 - 4.24 sec 1.79 sec 0.083 ms 0.054 ms 1.671 ms
6.9 × 105 2.1 × 106 1.4 × 106 - 8.46 sec 2.73 sec 0.164 ms 0.114 ms 3.408 ms
1.4 × 106 4.2 × 106 2.8 × 106 - 17.18 sec 4.46 sec 0.323 ms 0.229 ms 6.721 ms
2.9 × 106 8.6 × 106 5.7 × 106 - 35.76 sec 8.10 sec 0.666 ms 0.472 ms 13.142 ms

bunny

5.8 × 106 1.7 × 107 1.2 × 107 - 75.30 sec 15.92 sec 1.290 ms 0.929 ms 27.104 ms
Table 2. Detailed Performance for Other Tasks

task model #verts. #edges #faces #cells compile time compile time run time
(cold-started) (warm-started) (mesh-kernels)

buddha 4.1 × 106 1.2 × 107 8.1 × 106 - 44.54 sec 4.12 sec 1.015 sec
goyle 6.3 × 106 1.9 × 107 1.3 × 107 - 64.49 sec 6.26 sec 1.376 sec
lucy 2.0 × 107 6.1 × 107 4.0 × 107 - 239.57 sec 19.53 sec 3.293 sec
venus 2.5 × 107 7.6 × 107 5.0 × 107 - 359.43 sec 91.43 sec 5.356 sec

geodesic distance

vlamp 9.6 × 106 2.9 × 107 1.9 × 107 - 129.64 sec 9.72 sec 1.800 sec
buddha 4.1 × 106 1.2 × 107 8.1 × 106 - 44.54 sec 4.12 sec 0.713 ms
fluid 3.7 × 106 1.1 × 107 7.5 × 106 - 39.58 sec 4.64 sec 0.431 ms
goyle 6.3 × 106 1.9 × 107 1.3 × 107 - 64.49 sec 6.26 sec 0.770 ms
lucy 2.0 × 107 6.1 × 107 4.0 × 107 - 239.57 sec 19.53 sec 3.891 ms
venus 2.5 × 107 7.6 × 107 5.0 × 107 - 359.43 sec 91.43 sec 3.977 ms

vertex normal

vlamp 9.6 × 106 2.9 × 107 1.9 × 107 - 129.64 sec 9.72 sec 1.920 ms
projective dynamics deer 1.9 × 105 3.4 × 105 3.0 × 105 7.0 × 105 18.40 sec 1.72 sec 29.411 ms
XPBD cloth sim cloth 1.0 × 106 3.0 × 106 2.0 × 106 - 9.26 sec 6.05 4.192 ms
mesh-grid hybrid sim armadillo 2.2 × 108 5.7 × 108 3.8 × 108 7.1 × 108 208.30 a sec 19.05 sec 0.063 sec

aIn the mesh-grid hybrid simulation, we group 270 armadillos in a batch and repeat the patching information of those 270 armadillos for 63 times.

B ESTIMATED MEMORY FOOTPRINT FOR RELATIONS
Our compiler pre-computes the relations in compile time. Appar-
ently we do not want to compute and store every pair of relations
of input meshes. We, therefore, compute only the wanted relations
by inspecting user’s mesh-for kernels. In this section, we report our
estimated memory footprint for relations.
Let us consider a well-tessellated surface manifold mesh whose

number of vertices, edges and faces are approximately 1 : 3 : 2.
And we assume the each index in a relation is stored in a two-byte
unsigned integer for patches. Under these assumptions, the linear
algebraic representation (LAR) [DiCarlo et al. 2014] uses 12𝑛F to
store all FE and EV relations regardless of tasks, where 𝑛F is
the number of faces of a certain mesh. Unlike the LAR, our com-
piler only stores the wanted relations, so the memory footprint is
task dependent. For example, the surface normal computation re-
quires only an FV relation which will take 6𝑛F bytes; the geodesic
distance computation involves bothVF and FV relations which
takes 13𝑛F bytes; the scattering-style spring force computation uses
only an EV relation that takes 6𝑛F bytes; and the gathering-style
spring force computation uses anVV relation and takes 7𝑛F bytes.
In complex cases such as the cloth simulation using XPBD that
requires all EV , EF and FV relations, it takes us 21𝑛F bytes to
store all the relations. As we can see, our compiler may consume
larger memory compared with LAR for complex relation accesses.

But we do not need to compute relations in run-time as the return
of our memory investment. Note that we use ribbons to pad each
patch, so the actual memory footprint is slightly larger than our
estimations for both LAR and our relation representation.
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