
A Scalable Galerkin Multigrid Method for Real-time Simulation of
Deformable Objects

ZANGYUEYANG XIAN∗, Shanghai Jiao Tong University and Microsoft Research Asia
XIN TONG,Microsoft Research Asia
TIANTIAN LIU,Microsoft Research Asia

Fig. 1. Our multigrid method simulates a deformable dragon model with 200094 vertices and 676675 elements in its full space at 39.4 frames per second.

Wepropose a simple yet efficientmultigrid scheme to simulate high-resolution
deformable objects in their full spaces at interactive frame rates. The point
of departure of our method is the Galerkin projection which is simple to
construct. However, a naïve Galerkin multigrid does not scale well for large
and irregular grids because it trades-off matrix sparsity for smaller sized
linear systems which eventually stops improving the performance. Given
that observation, we design our special projection criterion which is based
on skinning space coordinates with piecewise constant weights, to make our
Galerkin multigrid method scale for high-resolution meshes without suffer-
ing from dense linear solves. The usage of skinning space coordinates enables
us to reduce the resolution of grids more aggressively, and our piecewise
constant weights further ensure us to always deal with reasonably-sparse
linear solves. Our projection matrices also help us to manage multi-level
linear systems efficiently. Therefore, our method can be applied to different
optimization schemes such as Newton’s method and Projective Dynamics,
pushing the resolution of a real-time simulation to orders of magnitudes
higher. Our final GPU implementation outperforms the other state-of-the-art
GPU deformable body simulators, enabling us to simulate large deformable
objects with hundred thousands of degrees of freedom in real-time.

CCS Concepts: • Computing methodologies → Physical simulation.

Additional Key Words and Phrases: Physics-based animation, real-time sim-
ulation, multigrid.

∗This work was done when Zangyueyang Xian was an undergraduate intern at Mi-
crosoft Research Asia.

Authors’ addresses: Zangyueyang Xian, Shanghai Jiao Tong University and Microsoft
Research Asia; Xin Tong, Microsoft Research Asia; Tiantian Liu, Microsoft Research
Asia, ltt1598@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/11-ART162 $15.00
https://doi.org/10.1145/3355089.3356486

ACM Reference Format:
Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A Scalable Galerkin
Multigrid Method for Real-time Simulation of Deformable Objects. ACM
Trans. Graph. 38, 6, Article 162 (November 2019), 13 pages. https://doi.org/
10.1145/3355089.3356486

1 INTRODUCTION
Deformable object simulation plays an important role in a variety
of graphics applications to generate rich and vivid virtual contents.
Many of these applications such as games, mixed reality, and surgi-
cal simulators require not only a visually acceptable deformation
simulation, but more importantly, real-time interaction feedback. In
order to provide stable large-time-step simulations of deformable
objects in iterative frame rates, the implicit time integration scheme
is usually considered as the standard way [Terzopoulos et al. 1987].
A classic numerical treatment to solve an implicit integration prob-
lem is Newton’s method. However, Newton iterations are costly
because of the frequent evaluation of state-dependent linear systems.
Therefore, only low-resolution objects can be handled by Newton’s
method in real-time.

Fast numericalmethodswere investigated throughout the decades,
enabling us to play with larger and larger meshes interactively.
These methods usually departs from Newton’s method with differ-
ent strategies: they either approximate Newton directions using
smart approximations in full space, such as Projective Dynamics
[Bouaziz et al. 2014] and Position Based Dynamics [Müller et al.
2007], or simulate only a portion of degrees of freedom in sub-
spaces which can be created using domain decomposition [Barbič
and James 2005] or skinning spaces [Jacobson et al. 2012]. However,
the performance of Projective Dynamics relies on pre-factorization
of a direct solver, which can be hindered by high memory require-
ments for extremely high-resolution meshes. The convergence of
Position Based Dynamics is not satisfying enough either, to simu-
late high-resolution and stiff objects, because of its usage of Jacobi
or Gauss-Seidel iterations. Subspace methods scale well for high

ACM Trans. Graph., Vol. 38, No. 6, Article 162. Publication date: November 2019.

https://doi.org/10.1145/3355089.3356486
https://doi.org/10.1145/3355089.3356486
https://doi.org/10.1145/3355089.3356486

162:2 • Zangyueyang Xian, Xin Tong, and Tiantian Liu

resolutions. But they are not able to handle the deformations that
are not encoded in their subspaces.
Multigrid methods [McAdams et al. 2011; Tamstorf et al. 2015]

are highly attractive when dealing with large linear system solves,
since it scales very well with the system matrix size while spends
typically less memory overhead compared to the original system
matrix. A well designed multigrid method is able to simulate high-
resolution objects in their full spaces while taking advantage of
its multi-resolution hierarchies. However, constructing the multi-
resolution data structure is often not an easy task to do.

We demonstrate an easy-to-construct yet scalablemultigridmethod
to simulate high-resolution deformable objects in real-time. Our
method starts from aGalerkinmultigrid scheme [Strang andAarikka
1986] which is known for its simplicity of set-up. However, a triv-
ial set-up of a Galerkin multigrid does not scale for general un-
structured meshes because of its high memory cost – especially in
three-dimensional cases. We understand this side effect of Galerkin
multigrid method from two aspects. One aspect is that the degrees
of freedom of each coarser grid level cannot be decreased too ag-
gressively from the finer grid, in order to maintain the convergence
of a Galerkin multigrid. This would cause the size of coarse level
systems larger than what we can afford. The other aspect is from the
Galerkin projection itself – a smooth projection matrix can greatly
increase the density of coarse grid linear systems, diminishing the
returns from smaller linear solves. Our method uses the skinning
space coordinates to represent the degrees of freedom for each ver-
tex in coarse levels. We show that granting more information such
as scaling and shearing to coarse level nodes is more efficient than
increasing the coarse level resolution. Therefore, our method can
reduce the size of each grid more aggressively compared to the orig-
inal Galerkin multigrid. We further solve the dense matrix problem
of a traditional Galerkin multigrid by setting piecewise constant
interpolation weights. This set-up not only prevents our method
from the curse of dense coarse level matrices, but enables us to
efficiently update our coarse level linear systems according to the
time-varying finest level linear system as well.

We deliver our multigrid solver as a general linear solve acceler-
ator for deformable body simulations that does not assume a par-
ticular optimization scheme. Our method can be used to accelerate
two-dimensional cloth and three-dimensional objects simulations
using either Newton’s method or Projective Dynamics. With the
ability to support dynamic system matrices during a simulation,
our method also handles all the run-time interactions such as drag-
ging and collisions decently. As a result, we are able to simulate
meshes with hundred thousands of degrees of freedom in real-time,
as shown in Figure 1.

2 RELATED WORK

2.1 Time integration schemes
Deformable body simulation has gained its popularity since the
pioneer work of Terzopoulos et al. [1987]. The key problem of de-
formable body simulation is to solve the equations of motion guided
by Newtonian mechanics, updating the position and velocity of
a deformable body using the external and internal elastic force.

The most straightforward scheme to integrate the force is the ex-
plicit scheme, such as explicit Euler. However, for the purpose of
animating deformable objects where performance prefers to use
large time-steps, explicit methods are commonly not robust enough
and suffer from numerical instability problems. Implicit schemes
such as implicit Euler offer a robust simulation solution for large
time-steps [Baraff and Witkin 1998], but they also rapidly remove
the high-frequency motions from the simulation, reducing the sys-
tem energy excessively. Symplectic integrators [Kharevych et al.
2006; Stern and Desbrun 2006] are well-known for their long term
energy-conserving behaviors – the system simulated by a symplec-
tic integrator will have its energy oscillate around the correct energy.
But they are not guaranteed to be stable for all situations. Implicit
Euler remains the most popular integrators for most of the graphics
applications because of its stability. For the rest of this paper, we
will also use implicit Euler as our discussed integrator.

2.2 Optimization integrators
Implicit Euler can be formulated as an optimization problem [Gast
et al. 2015; Martin et al. 2011] which tries to find a compromise
between a system’s inertia and elastic energy. In order to solve this
optimization problem, people usually rely on Newton’s method as
the core numerical solver because it converges fast. The cost of
Newton’s method is typically considered expensive since it requires
to construct the system Hessian matrix, fix its definiteness [Smith
et al. 2019; Teran et al. 2005] and solve the corresponding linear
system in every Newton iteration. A clever quasi-Newton descent
direction [Li et al. 2019] with careful line-search strategies [Zhu
et al. 2018] can help to accelerate Newton’s method, but is still not
enough to meet the real-time requirement.

2.3 Fast approximate solutions
When real-time performance becomes a hard requirement in some
applications, such as games, non-Newtonian methods are often
used. Shape matching [Müller et al. 2005; Rivers and James 2007]
reduces the degrees of freedom of an entire deformable body to some
linear and higher order transformations, in order to achieve the real-
time requirement. Inspired by shape matching methods, Position
Based Dynamics(PBD)[Müller et al. 2007] and Nucleus solver [Stam
2009] provide more general solutions to simulate deformable bodies
in real-time. PBD is one of the most popular techniques in real-
time physically based simulation in the last decade and therefore
is extended in many aspects. For example, better solver can be
applied to deform large meshes [Müller 2008]; fluid is supported
with PBD as well [Macklin and Müller 2013]; a unified multi-matter
simulation behind NVIDIA Flex is also based on PBD [Macklin et al.
2014]. We refer to a great survey paper [Bender et al. 2015, 2014]
for more details about PBD. The core projection step of PBD is
very similar to a Gauss-Seidel or a Jacobi iteration of the Step and
Project technique [Goldenthal et al. 2007] which treats the spring
constraints as infinite stiff hard constraints. An eXtended version
of PBD (X-PBD) [Macklin et al. 2016] applier the same strategy
to a unified treatment of both soft and hard constraints using a
complaint-constraint based framework [Tournier et al. 2015].

ACM Trans. Graph., Vol. 38, No. 6, Article 162. Publication date: November 2019.

A Scalable Galerkin Multigrid Method for Real-time Simulation of Deformable Objects • 162:3

Another interpretation of PBD was observed by Liu et al.[2013],
observing that PBD can be seen as an approximate integration of
the implicit Euler method. This observation was further extended
to a more general solver called Projective Dynamics (PD) [Bouaziz
et al. 2014] that supports more soft constraints defined by finite
elements method. Projective Dynamics uses a local/global update to
solve the implicit Euler problem, where all the system nonlinearity
is handled in the element-wise local steps, similarly to PBD. The
global step solves a state-independent linear problem which can be
pre-factorized using Cholesky factorization. Projective Dynamics
can be interpreted as a Quasi-Newton method that approximate
the time-dependent Hessian matrix using an example-dependent
Laplacian matrix [Liu et al. 2017], therefore it can be generalized to
support arbitrary hyper-elastic materials [Sifakis and Barbic 2012]
and can be further accelerated using limited-memory BFGS update
technique. Another interpretation of Projective Dynamics is a spe-
cial case of Alternating Direction Method of Multipliers (ADMM)
[Overby et al. 2017], leading to a different way to support more
general materials. The key advantage of Projective Dynamics and
its extensions is the pre-factorization of the system matrix, making
the run-time linear solve requires only a forward/backward sub-
stitution. However, the substitution step is not parallel computing
friendly. To make the most use of the power of GPU, iterative solvers
such as Jacobi or Gauss-Seidel methods are preferred. Wang[2015]
accelerated the iterative solvers for Projective Dynamics using a
semi-iterative Chebyshev method and Fratacangeli et al.[2016] im-
proves the parallelism of the Gauss-Seidel iteration using a novel
coloring technique.

2.4 Reduced space methods
Unlike the full-space approximate methods, another way to cut the
computation cost of simulating large deformable mesh is to reduce
the simulation degrees of freedom using reduced spaces. Linear
subspaces can be constructed using modal analysis methods, such
as modal warping [Choi and Ko 2005] or modal derivatives [Barbič
and James 2005]. Positional linear subspace can be constructed also
using the skinning subspace [Jacobson et al. 2012; Wang et al. 2015].
Being not satisfied enough on the reduced linear system solve, hyper-
reduced methods [Brandt et al. 2018; Von Tycowicz et al. 2013] also
reduce the computation cost of the right-hand side of the linear sys-
tem using carefully designed quadratures, pushing the performance
of the reduced space methods to another level. Nonlinear subspace
can also be constructed using autoencoder neural networks, restrict-
ing the system degrees of freedom in the latent space [Fulton et al.
2019]. The main problem of the reduced space methods is the lack
of representing detailed deformations which were not accounted
for during the subspace construction – a subspace method may not
produce high-frequency motions if the subspace was constructed
using a skinning space; example-based subspace methods may not
work well under completely unseen deformations from the training
data.

2.5 Multigrid methods
Multigrid methods offer an attractive solution where the simula-
tion mesh is large and deformation details are rich [Georgii and

Westermann 2006]. A proper multigrid method produces fine-scaled
simulation details in full-space while accelerates the convergence
from its multi-resolution subspaces. Finding proper interpolation
and restriction criteria is the key to a successful multigrid framework.
Cloth, as a two-dimensional model, is usually considered a good
case for multigrid acceleration [Jeon et al. 2013; Tamstorf et al. 2015;
Wang et al. 2018]. Structured three-dimensional multigrid is also a
popular method because of its intuitive way to interpolate between
the grid hierarchies [Dick et al. 2011; McAdams et al. 2011; Zhu et al.
2010]. Those regular grid structures are, by nature, consistent with
the voxel representation, and can be also used to accelerate topology
optimization problems [Liu et al. 2018; Wu et al. 2016]. However, a
regular grid based algorithm is often difficult to apply to complex
shapes or adaptively refined meshes. An efficient and simple-to-
setup multigrid method for unstructured three-dimensional meshes
remains a challenging problem. Our method is based on the Galerkin
multigrid method, taking advantage of its simplicity to set up. We
designed our Galerkin projection matrices to interpolate and restrict
between different grid levels to simulate general deformable meshes
including cloth and unstructured meshes.

3 BACKGROUND

3.1 Implicit time integration and descent methods
Deformable objects move in a virtual world with their own position
x and velocity v. At a certain time, a discrete version of the position
and velocity are notated as xn and vn . A time integration method
can be seen as the art to predict the future state xn+1 and vn+1
with correct physics behavior. Implicit Euler method discretizes
Newton’s second law of motion as follows:

xn+1 = xn + hvn+1 (1a)
vn+1 = vn + hM−1 (fint + fext (xn+1)) (1b)

whereh is the time-step size, M is the mass matrix of, fext and fint are
the external and internal force respectively. For simplicity, damping
is omitted in Eq. 1, and the internal force fint is the elastic force
which solely depends on the position xn+1. As hinted by Martin et
al.[2011], we can substitute Eq. 1b into Eq. 1a and anti-differentiate
the result equation on x. This will give us the solution of the root
finding problem Eq. 1 by minimizing an optimization problem:

д(x) =
1
2h2

| |x − y| |2M + E(x) − fTextx (2)

where | |·| |A denotes the matrix norm | |x| |A =
√

xTAx; E(x) is the
elastic energy of the deformable object fint (x) = −∇xE(x); together
with the negative sign, −fTextx is the potential generated by the
external force; and y = xn +hvn is an aggregated known vector the
encodes the information of current position and velocity, indicating
the future position as if there were no force. Once Eq. 2 is minimized,
the solution of Eq. 1 is also found: xn+1 = argminx д(x), where xn+1
balances the inertial term and the potential energy terms perfectly.
Due to the nonlinearity of д(x), an analytical solution to min-

imize it is often not possible to evaluate. The common strategy
is to iteratively descend the objective until finding a (local) mini-
mum. A general descent method is described in Alg. 1, where the
superscript (k) denotes the iteration count, and K is the maximum

ACM Trans. Graph., Vol. 38, No. 6, Article 162. Publication date: November 2019.

162:4 • Zangyueyang Xian, Xin Tong, and Tiantian Liu

ALGORITHM 1: General Descent Method.
1 initial guess: set x(0).
2 for k = 0, 1, . . . , K − 1 do
3 find descent direction: δx(k);
4 decide step size: α > 0;
5 commit descent direction: x(k+1) := x(k) + αδx(k).
6 end
7 return x(K)

allowed number of iterations. The key of a descent method is to
find the descent direction δx. In order to compute δx, the gradient
information ∇д(x) is always involved. A common way to represent
the descent direction is:

δx = −A−1∇д(x) (3)

where the A matrix could be an arbitrary symmetric positive definite
matrix. Different methods might prefer different choices of the A
matrices and its linear solvers. Trade-offs between per-iteration per-
formance and convergence speed aremade inmany real-time simula-
tion algorithms. For example, Newton’s method uses A = ∇2д(x) to
achieve nice convergence while Projective Dynamics approximates
∇2д(x) using a constant Laplacian-like matrix and pre-factorize
the system matrix to achieve better per-iteration performance. A
multigrid method could be the key to balance the convergence and
the per-iteration cost in order to support a more efficient descent
method.

3.2 Multigrid methods
A standalone multigrid method can be seen as one type of itera-
tive methods to solve for linear systems. Stationary iterative meth-
ods such as Gauss-Seidel, Jacobi or their mixture successive over-
relaxation, work very well when the system size is moderate. In
higher resolution systems, they converge slower and might need
to stop before converged. An early stop of these iterative methods
produces a smooth error, which means the high-frequency error
is removed quickly first, leaving only low-frequency error in the
system. The multigrid methods offer a pleasant solution to mitigate
this issue. The key observation of a multigrid method is that a low-
frequency error in a finer level behaves like a high-frequency error
in a coarser level. Under such observation, passing a smoother error
from a finer grid level to a coarser level would make it “rougher”,
so that it can be removed in the coarse level iterations. Alg. 2 de-
scribes a simple two-grid v-cycle in a multigrid hierarchy. R is the
restriction matrix that passes fine resolution values to coarse reso-
lution; P is the prolongation (interpolation) matrix that interpolates
coarse resolution values back to fine resolution; the coarse level
solve A2e2 = r2 can be solved directly or iteratively, or even recur-
sively by nesting another two-grid v-cycle into it. The A2 matrix
in coarse level can be constructed using different ways. One way
that naturally defines the A2 matrix is using the projection-style:
A2 = RAP. This is often referred as the Galerkin multigrid method.

Unlike pure geometry-based multigrid methods, Galerkin multi-
grid does not need to re-discretize the system matrix using finite ele-
ment method on the coarser mesh. The restriction and interpolation

ALGORITHM 2: A two-grid v-cycle to solve Ax = b.
1 initial guess: set x1;
2 pre-smooth on Ax = b to update x1;
3 compute residual r1 := b − Ax1;
4 restrict the residual r2 := Rr1;
5 solve A2e2 = r2 to reach e2; (one might nest another two-grid

v-cycle to solve this;)
6 interpolate the error e1 = Pe2;
7 update error to x1: x1 := x1 + e1;
8 post-smooth on Ax = b to update the final x1;
9 return x1

steps are easy to set up, in fact, once the interpolation matrix P is de-
cided, the restriction matrix is often set to R = PT to make the coarse
level system symmetric. The Galerkin projection also automatically
handles the boundary conditions well, correctly passing the bound-
ary conditions between different multigrid levels. Although holding
all those sweet features, Galerkin multigrid method is seldom used
in simulations of high-resolution deformable objects, especially for
unstructured three-dimensional objects [Jacobson 2015]. We rea-
son that as the bad memory consumption when stacking Galerkin
multigrid v-cycles. The Galerkin projection matrices accumulate
more and more non-zero values in coarser level system matrices
which eventually stops it from gaining computational advantages
on lower resolution grids.

Our method is also based on the Galerkin projection but scales for
large unstructured meshes. We will show that by carefully designing
the projection matrices, we can gain the multigrid acceleration on
convergence without suffering from the curse of coarser level dense
systems.

4 METHOD
In order to describe our Galerkin projection criterion, we first build
our multi-level hierarchy by uniformly sampling vertices in multi-
resolutions, we then set up the projection matrices using skinning-
space coordinates with piecewise constant interpolation weights.
We show that our projection matrices not only mitigate the mem-
ory cost issue for a Galerkin multigrid, but enables us to update
our multi-level linear systems efficiently as well. There are edge
cases where our projection matrices cause singularity, we will show
our regularization approach to prevent undetermined solutions. To
complete our multigrid method, we will also mention our choice of
smoothers and bottom level solvers. At last, we explain how to use
our method in a dynamics simulation with time-varying attachment
and collision constraints.

4.1 Building the grid hierarchy
Assuming we are simulating a discretized deformable object with n
vertices, let us denoteΩ0 = {0, 1, . . . ,n − 1} the set that contains the
indices of all vertices on this full resolution deformable object. The
positions of all the vertices are encoded in a single column vector
x ∈ R3n×1. One natural way to pick fewer degrees of freedom of
a coarse level system is to find a subset of Ω0: Ω1 ⊂ Ω0. In order
to make the multigrid structure reasonable, we want the vertices

ACM Trans. Graph., Vol. 38, No. 6, Article 162. Publication date: November 2019.

A Scalable Galerkin Multigrid Method for Real-time Simulation of Deformable Objects • 162:5

in Ω1 as representative as possible. Here we assume homogeneous
materials, therefore a uniform sampling would make it work.

Ω3={ }

Ω2={ , }

Ω1={ , , }

Fig. 2. Illustration of our grid hierarchy construction. Ωl contains the ver-
tices on the l -th level grid. Coarse level vertices form a subset of the fine
level vertices: Ωl+1 ⊂ Ωl .

Our approach follows the furthest point sampling method [Brandt
et al. 2018] which can be seen as a special case of the k-means++
algorithm [Arthur and Vassilvitskii 2007]. Let us first consider a
simple two-grid structure where Ω0 contains all the full resolution
vertices, and Ω1 will be a subset of it with k1 vertices (k1 < n).
We first initialize Ω1 with a random vertex in Ω0 and compute
the geodesic distances to Ω1 of all other vertices using Dijkstra’s
algorithm. We then pick the most distant vertex in Ω0 \ Ω1, add
it to Ω1 and update the geodesic distances to the new Ω1. Note
that the geodesic distance update is fairly lightweight because we
only need to update around the most recently added vertex in Ω1.
We repeat this process until the size of Ω1 is met. If multiple grid
levels are needed, we simply pick the first kl+1 vertices from Ωl
as our Ωl+1, l = 1, 2, This automatically picks approximately
equidistant vertices by the construction of Ωl as we discussed above.
Figure 2 illustrates this construction process. Note that although it is
a bottom-up process, our grid construction does not always require
the greedy algorithm to begin with. We can start with an arbitrary
coarsest grid (e.g. picking vertices manually), and automatically
grow the multigrid structure upon the initial grid.

4.2 Restriction and interpolation
Once the multi-resolution hierarchy is built, we need to decide
the interpolation and restriction matrices P and R for the Galerkin
projection. We first decide the degrees of freedom of coarse level
variables. The degrees of freedom of a coarse grid is the product
of two parts: the number of vertices of the grid and the degrees of
freedom of each vertex on that grid. A trivial solution is to grant
three degrees of freedom for each coarse level vertex because that
fits the degrees of freedom of finest level grid data – the positions
of full resolution vertices, making it easier and more consistent to
interpolate data between levels [Wang et al. 2018]. However, we can
not cut the degrees of freedom on coarser level grids too aggres-
sively using this approach without hindering the convergence of
a multigrid method. We found that increasing the degrees of free-
dom for each coarse level node improves our multigrid convergence
more efficiently compared to increasing the number of coarse level

vertices. (Our experiment can be found in Section 5.3.) Therefore,
we use the skinning space coordinates [Brandt et al. 2018; Jacobson
et al. 2012] where each coarse level node will have twelve degrees
of freedom that can fully represent an affine transformation.

To use the skinning space coordinates, we start from linear blend-
ing skinning (LBS)[Magnenat-Thalmann et al. 1988] that computes
the vertex positions as follows: xi =

∑
j ωi jAjXi , where xi ∈ R3×1

is the position of the i-th vertex, Aj ∈ R
3×4 is the affine transforma-

tionmatrix of the j-th control handle,Xi ∈ R
4×1 is the homogeneous

coordinate of the rest-pose position of vertex i , andωi j is the weight
of handle j to vertex i which typically ranges from 0 to 1. Rearrang-
ing this LBS equation will give us a simple linear relation between
the vertex positions and skinning space transformations:

x = Uq (4)

where x =
[
xT0 , x

T
1 , . . . , x

T
n−1

]T
∈ R3n×1 is the positions of all ver-

tices; q = [vec(A0),vec(A1), . . . ,vec(Ak−1)]
T ∈ R12k×1 denotes all

the skinning space degrees of freedom, notation vec(·) vectorizes a
matrix to a row vector; and U ∈ R3n×12k is the linear transforma-
tion matrix between q and x, each block of U can be written down
explicitly as Ui j = ωi jXT

i ⊗ I3 ∈ R3×12 where ⊗I3 is a Kronecker
product with a 3 × 3 identity matrix.
We pick q as our first level grid variable, so the interpolation

matrix from this level to the finest level is automatically set: P = U.
To ensure the symmetry of the system matrix in the first level using
Galerkin-projection, we set the restriction matrix to R = UT. We
keep using the skinning space coordinates as the degrees of freedom
for coarser level grid variables, setting the interpolation laws as:

ql = Ulql+1 (5)

where l = 1, 2, . . . , q1 = q, and Ul is the linear interpolation matrix
between the coarser level grids. Each block of Ul is simply a scaled
12 × 12 identity matrix: Ul i j = ωl i j I12. Similarly, the coarser level
restriction matrices are set as Rl = UT

l .
Now the only missing piece is the weight parameters, ω, that

indicate how the coarse level variables will influence the finer level
ones. The most intuitive way is to set up the weights as smooth as
possible, for example, using bounded biharmonic skinning weights
[Jacobson et al. 2011]. We tested this idea as our first attempt to set
our weight parameters ω, and to further compute our interpolation
matrix U. Under this setting, the multigrid method behaves great in
terms of reducing the residual of a linear system. However, it works
incredibly slow – we encountered exactly the same problem as we
described in Section 3.2. In order to explain this, let us consider
a two-grid structure, where two fine-grid vertices x1 and x2 are
“affected” by n1 and n2 coarse-grid vertices respectively by some
positive weights. Therefore an edge between x1 and x2 in the fine
grid will produce O((n1 + n2)2) non-zeros in the coarse grid. Those
fillings would make the coarse level system matrix UTAU much
denser than it should be. Even worse, those dense data will be
passed to the coarser levels, making their system matrices denser
and denser. Figure 3 was produced from the octopus example with
39223 vertices. We pick 400 vertices to form a coarse level grid and
analyze the coarse linear system. Although the degrees of freedom
of the coarse grid is aggressively decreased from the full resolution

ACM Trans. Graph., Vol. 38, No. 6, Article 162. Publication date: November 2019.

162:6 • Zangyueyang Xian, Xin Tong, and Tiantian Liu

DoF 117669 to 4800 (keep in mind that each coarse grid vertex has
12 degrees of freedom), the number of non-zeros is only reduced
roughly by a quarter if we use a smooth weighting strategy as shown
in Figure 3(b).

(a) (b) (c)

Fig. 3. The sparsity patterns and numbers of non-zeros. (a) the systemmatrix
A ∈ R117669×117669 for the octopus example with 39223 vertices in Figure 11;
(b) the coarse level grid matrix UTAU ∈ R4800×4800 generated using bounded
biharmonic weights; (c) the coarse level grid matrix UTAU ∈ R4800×4800

generated by our piecewise constant weights. Both (b) and (c) pick the same
400 vertices as the coarse level grid.

To overcome the problem caused by dense systems in coarse
levels, our method uses piecewise constant weight parameters: ω ∈

{0, 1}. Each vertex in a finer grid is fully “controlled” by its closest
vertex in the coarser grid, with the corresponding weight ω = 1.
Otherwiseω is set to zero. The intuitive part of this idea is to greatly
reduce the number of non-zeros for coarse grids, which can be seen
from Figure 3(c). However, this idea is usually considered counter-
intuitive because discrete weights produce non-smooth results. On
the contrary, we observe that the non-smooth results are not a
big problem for multigrid methods because of the smoothing step.
The artifact caused by non-smooth weight is often produced by
an extremely high-frequency error – think of some vertices at the
boundary between two “control handles”, transforming the control
handles separately will tear those boundary vertices apart, causing
high-frequency errors which look like a cliff. Those high-frequency
errors should be dealt with efficiently by stationary iterative solvers.
In all of our test cases including cloth and three-dimensional mesh
simulations, we observe that those high-frequency errors can be
quickly removed with a few Gauss-Seidel or Jacobi iterations. Please
refer to Section 5.2 for a more detailed analysis.
We only set up our interpolation and restriction matrices once

before the simulation starts, and we will keep reusing the same U
matrices during the simulation.

4.3 Fast update of multi-level system matrices
Another advantage of the 0-1 weights we used to construct our U
matrices is the efficiency to update the system matrices for different
level grids. The full resolution system matrix A may change all the
time, so that the coarse level matrix UTAU needs to update with
A as well. For the first multigrid level, the system matrix can be
rewritten as follows:

UTAU =
∑
i , j

UT
i Ai jUj (6)

where Ai j ∈ R
3×3 is the i, j-th block of A, Ui ∈ R

3×12k is the i-th
3 × 3 block-wise row of U. From the definition of U as described

after Eq. 4, in addition with our 0-1 weighting strategy, we know
that the only non-zero block of Ui is Ui ,i1 = XT

i ⊗ I3 ∈ R3×12, where
i1 is the index of the coarse level vertex that fully controls xi . After
some numerical simplification, we can see that any update of Ai j
will end up with a 12-by12 block update in

[
UTAU

]
i1, j1

:[
UTAU

]
i1, j1
= Ai j ⊗

(
XiXT

j

)
(7)

where i1 and j1 are the indices of coarse level vertices that affects
xi and xj respectively. Multiple different Ai j blocks can update to
the same coarse level

[
UTAU

]
i1, j1

when fine grid vertices i and
j are affected by coarse level vertices i1 and j1, depending on the
cross-grid weights. Even coarser level interpolation is trivial because
the interpolation matrices between coarser levels are only made of
12 × 12 identity matrices as shown after Eq. 5.

Therefore, our method can also successfully handle the change
of mass, time-step, or even rest-pose during the simulation as long
as our U matrices are not changed.

4.4 Regularization for rank deficient cases
For our simulation cases, the system matrix A in Eq. 3 is guaranteed
to be symmetric positive definite, then how about our coarse grid
system matrices? According to Section 4.2, our method uses two
types of interpolation matrices: U ∈ R3n×12k for the first level grid
and Ul ∈ R

12kl×12kl+1 , where kl is the number of vertices we use
for the l-th level grid, k1 = k and kl+1 < kl . By construction of
A1 = UTAU and Al+1 = UT

l AlUl , we can see that our Al matrices
are symmetric positive semi-definite – they will be positive definite
if they are not singular. It is easy to prove Al+1 = UT

l AlUl is full-
ranked as long as Al is full-ranked: Our Ul is a Kronecker product
between a 0-1 matrix and I12, that 0-1 weight matrix is full-ranked
because each vertex in the coarser grid will at least fully control one
vertex in the finer grid which is that vertex self, since Ωl+1 ⊂ Ωl .

So let us focus on the first level grid matrix A1 = UTAU. Since A is
positive definite, the only possibility to make A1 singular is U being
rank-deficient: rank(U) < 12k . In that case, the null space of UTAU
would be the same with U. In theory, this is not a problem because
the indeterminate solution of UTAUq = UTb will be determinate
after interpolated back to full space using x = Uq. However, we
are not going to risk ourselves with dividing zero by zero cases
because it is dangerous in practical implementations. The key idea
is to regularize our A1 matrix only on its null space, so that we can
stably solve for one solution of UTAUq = UTb.

Given the assumption that A being positive definite and 12k < 3n,
we know that A1 is only going to be singular if U is not full ranked.
Ideally, each vertex in coarse level should contribute a rank-12 block
toU to ensure the full rank ofU. However, that is not always the case.
To explain this, let us take a deeper look of this block contributed
by a single vertex in the course level, let us denote this block as
Ub3 = Ub ⊗ I3, where

Ub =

X(x)
1 X(y)

1 X(z)
1 1

X(x)
2 X(y)

2 X(z)
2 1

...
...

...
...

X(x)
nb X(y)

nb X(z)
nb 1

(8)

ACM Trans. Graph., Vol. 38, No. 6, Article 162. Publication date: November 2019.

A Scalable Galerkin Multigrid Method for Real-time Simulation of Deformable Objects • 162:7

For the simplicity of notation, we assume this coarse grid vertex
controls nb vertices whose indices ranges from 1 to nb in the finest
level. Let us also denote Ab as a sub-matrix of A that contains only
the vertices indexed from 1 to nb . UT

b3AbUb3 shares exactly the
same zero space with Ub3 which is solely determined by Ub . When
would rank(Ub) < 4? That would only happen when X1, X2, · · · ,
Xnb lie in the same plane, or even worse, same line or same point.
For example, in a cloth simulation where the cloth is initialized
with a plane, Ub is always rank-deficient; in cases where one coarse
grid vertex controls less than 4 fine level vertices, Ub will also be
rank-deficient.
In order to regularize A1, we first compute the eigenvalues of

UT
bUb ∈ R4×4 for each coarse grid vertex to detect if any of them is

close to zero. We then find the corresponding eigenvector n. We de-
note this eigenvector as n because it can be interpreted geometrically
as the normal direction of the degenerated space of

{
X1, · · · ,Xnb

}
.

And we finally add nnT ⊗ I3 to UT
b3AbUb3 to regularize the whole

system where the n vector simply “lifts up” that degenerated space
back to a three dimensional one. Note that we do not need any
scaling parameters before nnT. Because no matter how much we
regularize the system, the regularization term only changes the
values that lie in the null space of U which will vanish after we
interpolate them back using x = Uq. This regularization only de-
pends on U matrix, therefore we only need to handle it once in our
pre-computation step.

4.5 Smoother and coarsest level solver
In theory, we can adopt any stationary iterative solvers that produce
smooth errors as our smoother. Remember that our linear system
matrices are stored in blocks where A is stored using 3×3 blocks and
the coarse level matrices Al are stored using 12 × 12 blocks, we use
block iterative solvers with corresponding block sizes to smooth our
linear systems. In practice, we apply block Jacobi iterations for mass-
spring systems behind our cloth simulations because of its pleasing
per-iteration performance. For three-dimensional finite element
methods, we use a colored symmetric block Gauss-Seidel method
[Fratarcangeli et al. 2016] as our smoother, since the systemmatrices
in FEM simulations are no longer diagonally dominant, hurting the
convergence for Jacobi iterations without over-relaxation.
Our coarsest level grid size is typically small, ranging from tens

to hundreds of degrees of freedom. Therefore, we choose to solve
our coarsest level linear system using dense Cholesky factorization
technique.

4.6 Dynamics
Our method is used to solve for Eq. 3 in dynamics simulations of
deformable objects. As we do not rely on any pre-factorization, our
method does not prefer any specific choices of the system matrix
A. The only assumption we made is that A being symmetric posi-
tive semi-definite so that our stationary iterative solvers and dense
Cholesky factorization will work. Note that this assumption also
guarantees δx to be a descent direction, which makes the whole
descent method (Alg. 1) work. Online update of the system matrix
A due to time-varying attachment or collision constraints is natu-
rally supported in our multigrid method. Thanks to our multigrid

structure, we are able to quickly update the multi-level matrices to
account for the online update of A using Eq. 7.

Attachments. We use soft attachment constraints to pin an object
to a certain place, or to drag some vertices around due to user interac-
tion. The attachment constraint is similar to connect amesh vertex to
some target position using a zero-length spring. The energy of an at-
tachment constraint can be seen as: Eatt(xatt) = 1

2katt | |xatt − tatt | |2,
wherekatt is the attachment stiffness, xatt is the vertex to be attached
and tatt ∈ R3×1 is the target position. The second order derivative
∇2

xattEatt = katt ⊗ I3 can be dynamically added or removed from sys-
tem matrix in Eq. 3, enabling users to move vertices interactively.
Collisions. A similar strategy is applied to handle collisions, we

detect inter-penetrations at the beginning of every iteration, and
attempt to move the collided vertex out of its collision surface using
a quadratic penalty energy: Ecol(xcol) = 1

2kcol
(
(xcol − tcol)T n

)2
,

where kcol is the collision stiffness, xcol is the collided vertex, tcol is
the closest surface vertex and n ∈ R3×1 is the normal direction of the
collided surface. This energy is only enabled when the vertex is pen-
etrating the collision surface, i.e. (xcol − tcol)T n < 0, otherwise the
collision energy is set to zero. The contribution to the system matrix
due to one collision can be written as ∇2

xcolEcol = kcolnnT ∈ R3×3.
Unlike Projective-Dynamics-based methods which are often reluc-
tant to update this anisotropic collision Hessian to the systemmatrix
[Liu et al. 2017], our method correctly accounts for the collision
when computing the system matrix. Some results of our simulations
with collisions can be seen in Figure 4.

Fig. 4. Dropping armadillos into a Pachinko machine (left), with only static
collisions; Draping a piece of cloth over a sphere (right).

4.7 Pipeline summary
To put all the pieces together, we summarize our simulation pipeline
in Alg. 3 and Alg. 4, where the initialization step is only executed
once before the entire simulation, and the update step is computed
every frame.

5 RESULTS

5.1 Settings and performance
Table 1 reports all the testing scenarios we used in this paper and
in our accompanying video. All examples are executed on an In-
tel Xeon 3.7 GHz CPU and an NVIDIA GeForce RTX 2080 GPU.
Most of the run-time algorithms are implemented in GPU using

ACM Trans. Graph., Vol. 38, No. 6, Article 162. Publication date: November 2019.

162:8 • Zangyueyang Xian, Xin Tong, and Tiantian Liu

ALGORITHM 3: Initialization
1 set the max depth d of a multigrid: d >= 2;
2 run furthest point sampling to construct Ω0, . . . , Ωd−1; (Section 4.1)
3 construct our projection matrices U0, . . . , Ud−1; (Section 4.2)
4 find rank-deficient subspaces and their corresponding degenerated

eigendirections n. (Section 4.4)
5 if running Newton’s method then
6 analyze sparsity pattern for the system Hessian A0;
7 analyze sparsity pattern for multi-level system matrices

A1, . . . , Ad−1;
8 allocate memory for multi-level system matrices A0, . . . , Ad−1.
9 else
10 compute and store the system matrix A0 := M/h2 + L; ([Bouaziz

et al. 2014])
11 compute and store the multi-level system matrices

A1, . . . , Ad−1.
12 end

ALGORITHM 4: Update
1 handle user interactions, generate run-time attachment constraints;
2 initialize x := xn + hvn .
3 while max iteration count not reached & not converged do
4 run collision detection, generate collision constraints;
5 if running Newton’s method then
6 fill the definiteness-fixed system Hessian matrix

A0 := M/h2 + ∇2
xE(x);

7 fill the multi-level matrices A1, . . . , Ad−1.
8 end
9 regularize A1 using n if necessary; (Section 4.4)

10 update attachment and collision constraints to A0, . . . , Ad−1;
(Section 4.3)

11 compute gradient ∇xд(x);
12 find descent direction δx := −A−1

0 ∇xд(x) using our multigrid
solver; (Alg. 2)

13 decide step size α > 0 using line search;
14 commit descent direction x := x + αδx.
15 end
16 update position: xn+1 := x;
17 update velocity: vn+1 := (xn+1 − xn)/h.

CUDA library, pre-computations such as setting up the grid hierar-
chy and compute the U matrices are mostly handled on CPU. For
all experiments, we use implicit Euler with a fixed 1/30s time-step
as our time integrator. The material properties of our simulated
examples can be seen in the appendix. We run Projective Dynam-
ics [Bouaziz et al. 2014] on our three-dimensional finite element
simulations because we find the result visually plausible enough
for most cases. In cases where vivid high-frequency effects take
place, like a cloth simulation, we use Newton’s method to compute
the descent directions. A definiteness fix is needed when running
Newton’s method where the Hessian matrix is not guaranteed to
be positive definite. In these cases, we follow the method in [Teran
et al. 2005] to project the element-wise Hessian blocks into posi-
tive semi-definite matrices before assembling them into the final
Hessian matrix. We keep nesting the two-grid c-cycles to form a

V-cycle in our experiments. The number of grid levels, the number
of vertices in each grid level and the choice of the linear solver for
each level are reported in Table 1. For example, in the fourth row
of the armadillo example in Table 1 with a grid set-up “25/500/all”
and a solver set-up “direct/GS(3)/GS(3)”, we use three grid levels:
the coarsest level grid contains 25 vertices and is solved by a direct
solver using dense Cholesky factorization; the middle level grid
contains 500 vertices and is pre- and post-smoothed by 3 iterations
of Gauss-Seidel respectively; the finest level grid contains all the
mesh vertices and is also pre- and post-smoothed by 3 Gauss-Seidel
iterations. All our examples are simulated in real-time with more
than 30 frames per second.

Fig. 5. Cost breakdown of method to simulate one frame of a piece of cloth
(left) and an octopus (right).

Table 2 shows the cost breakdown of our method to solve for one
frame of our examples. As we can see, when computing one Newton
iteration, the major cost of our method is at the multi-level matrix
update step where we compute all the UTAU matrices as described
in Section 4.3 and the smoothing step where we typically run fewer
than 10 Jacobi or Gauss-Seidel iterations for non-coarsest grids. In
one Projective Dynamics iteration, the cost of updating the finest
level matrix is close to zero because of the pre-computation of the
constant system matrix. However, the cost of the multi-level matrix
update is still there to account for time-varying attachment and
collision constraints. The cost of gradient evaluation, coarsest level
dense linear system solve, interpolation and restriction is usually
small compared with the smoothing step. To illustrate this better,
we pick two examples solved by Newton’s method and by Projective
Dynamics respectively, and visualize their cost breakdown in a pie
chart as shown in Figure 5.

5.2 Validations
We design a two-grid v-cycle experiment to test the effectiveness
of our multigrid method. The goal is simple: we know that sta-
tionary iterative methods take care of the high-frequency error
well, and we want to see if our multigrid scheme does its duty
of handling the low-frequency error. We pick an arbitrary frame
from the simulation of an armadillo and setup our linear system
Ax = b to decide the descent direction where A is adopted from
Projective Dynamics [Liu et al. 2017] and b = −∇д. As described in
Alg. 2, we first pre-smooth on the linear system using 3 iterations
of symmetric Gauss-Seidel to reach an initial value x1, and then
execute line 3 to line 7 in Alg. 2 as the coarse grid linear solve. Let
us note the error after our pre-smoother as ϵ = A−1b − x1 = A−1r1.

ACM Trans. Graph., Vol. 38, No. 6, Article 162. Publication date: November 2019.

A Scalable Galerkin Multigrid Method for Real-time Simulation of Deformable Objects • 162:9

Table 1. Statistics for all our testing scenarios. Grid and solver set-up reports the number of vertices and the corresponding linear solver in each level
respectively. In the solver set-up column, “GS” and “J” stands for symmetric Gauss-Seidel and Jacobi iterations with the corresponding number of iterations
inside parentheses; “direct” is for a dense direct solver factorized by Cholesky decomposition which can only be used in the coarsest level. Our method solves
for either a static system matrix computed from Projective Dynamics or a dynamics Hessian matrix using Newton’s method. The “#iters” stands for the
iteration count of the corresponding nonlinear optimization method.

example #verts. #elems. grid set-up solver set-up system matrix #iters fps pre-computation
armadillo 1241 3581 10/all direct/GS(3) static 1 303.0 1.9 sec

6654 20751 25/all direct/GS(3) static 1 232.6 2.0 sec
14779 54855 50/all direct/GS(3) static 1 181.8 3.0 sec
50736 163779 25/500/all direct/GS(3)/GS(3) static 1 86.2 6.3 sec
95587 306957 50/1000/all direct/GS(3)/GS(3) static 1 55.2 11.6 sec
126966 405899 25/300/2000/all direct/GS(3)/GS(3)/GS(3) static 1 41.0 16.3 sec

cloth 40401 240000 25/100/1000/all direct/J(10)/J(5)/J(5) static 4 74.8 8.3 sec
40401 240000 25/100/1000/all direct/J(10)/J(5)/J(5) dynamic 4 35.7 8.3 sec
63001 375000 100/1000/all direct/J(10)/J(5) dynamic 3 31.5 13.4 sec

dragon 200094 676675 50/1000/all direct/GS(2)/GS(2) static 1 39.4 5.5 sec
octopus 39223 112145 100/1000/all direct/GS(2)/GS(2) static 3 43.2 22.8 sec

Table 2. Runtime cost breakdown of our method to generate one frame of the simulations in all our test cases. The order of examples are identical with Table 1.

example #verts. #elems. finest matrix multi-level gradient smoothing coarsest level interpolation
update matrices update evaluation solve & restriction

armadillo 1241 3581 0 ms 0.29 ms 0.18 ms 2.32 ms 0.24 ms 0.26 ms
6654 20751 0 ms 0.55 ms 0.25 ms 2.91 ms 0.28 ms 0.31 ms
14779 54855 0 ms 1.27 ms 0.28 ms 3.30 ms 0.30 ms 0.36 ms
50736 163779 0 ms 0.58 ms 1.05 ms 8.77 ms 0.26 ms 0.94 ms
95587 306957 0 ms 1.36 ms 2.43 ms 12.73 ms 0.28 ms 1.30 ms
126966 405899 0 ms 0.74 ms 3.21 ms 18.30 ms 0.25 ms 1.90 ms

cloth 40401 240000 0 ms 0 ms 0.58 ms 9.88 ms 0.67 ms 2.23 ms
40401 240000 1.56 ms 8.35 ms 0.43 ms 8.70 ms 0.52 ms 1.92 ms
63001 375000 2.13 ms 15.22 ms 0.73 ms 11.39 ms 0.77 ms 1.51 ms

dragon 200094 676675 0 ms 3.07 ms 1.83 ms 16.53 ms 0.50 ms 1.22 ms
octopus 39223 112145 0 ms 1.55 ms 0.05 ms 15.21 ms 0.28 ms 2.29 ms

Assuming the coarse level linear system UTAUe2 = r2 is com-
pletely solved, we can find the new error after the coarse grid solve
which is ϵ̃ = A−1b − (x1 + Ue2) = ϵ − Sϵ , where S is defined as
U
(
UTAU

)−1
UTA with a nice property: S = S2. This property indi-

cates the eigenvalues of S are either 0 or 1. Therefore S can be seen
as an identity matrix on the subspace decided by U (or a zero-matrix
on the complementary subspace). The intuitive explanation is that
once the coarse level grid handles its coarse linear solve perfectly, a
Galerkin multigrid scheme simply removes all errors in the subspace
decided by U and ignores the rest of the errors. Of course we are
not expecting ϵ̃ = ϵ − Sϵ to be zero (which would be perfect, but
not possible), we can at least check how much the error is reduced
by defining a reduction factor ρ = | |ϵ̃ | |/| |ϵ | |, the lower ρ the better
error reduction. We did four experiments with different set-ups to
check the corresponding reduction factors ρ, as shown in Table 3,
where k is the number of vertices we used for the coarse grid; DoF
stands for the degrees of freedom for each coarse level vertex; and
weights are set either discretely to piece-wise constant or smoothly
using bounded biharmonic weights [Jacobson et al. 2011].

Table 3. Coarse grid error reduction (ρ) for different multigrid set-ups.

test k DOF weights ρ
#1 100 12 piecewise const. 0.058
#2 100 12 smooth 0.019
#3 100 3 piecewise const. 0.494
#4 400 3 piecewise const. 0.407

We used an armadillo example with 14779 vertices as shown on
the left of Table 3 to generate the table. Test #1 is our method which
uses 100 coarse level vertices with 12 degrees of freedom for each
vertex and piecewise constant weights to construct the interpolation
U ∈ R44337×1200 matrix. We first compare our method with test
#2 which uses exactly the same setting but smooth weights. As
expected, the multigrid with smooth weights efficiently reduces the
error to a factor of ρ = 0.019, as oppose to our multigrid structure
with ρ = 0.058. However, compared to our method, this better
error reduction comes at a cost of more than 5 times of memory
consumption to store the UTAU matrix plus more than 10 times

ACM Trans. Graph., Vol. 38, No. 6, Article 162. Publication date: November 2019.

162:10 • Zangyueyang Xian, Xin Tong, and Tiantian Liu

slower because of chunkier coarse system matrix update and denser
matrix-vector multiplications. The extra memory overhead of using
smooth weights would be even amplified when using multiple levels
of grids.
We also tested to see whether using the skinning space coordi-

nates for the coarse grid makes a difference. Test #3 uses our settings
but gives each coarse grid vertex 3 degrees of freedom. As a result,
it only cuts the error roughly by half. To make a fair comparison,
we increased the number of vertices on the coarse grid to 400 when
using position space coordinates, as shown in test #4. This would
make the total coarse level degrees of freedom the same with our
method. Increasing number of vertices helps to reduce the error
more, but not as efficiently as increasing the per-vertex degrees of
freedom like our method.

5.3 Scalability
Figure 6 shows a swinging armadillo example simulated using our
method. The armadillo is pinned on its ears and falls under gravity.
We tested multiple simulations using the same physics parameters,

frame 1 frame 31 frame 61 frame 91

40
58

99
 te

ts
30

69
57

 te
ts

16
37

79
 te

ts
54

85
5

te
ts

20
75

1
te

ts
35

81
 te

ts

Fig. 6. The same armadillo example with different resolutions ranging from
3581 tetrahedra to 405899 tetrahedra.

e.g. mass density and Lamé coefficients, on different resolutions of
the same armadillo, in order to see the scalability of our method.
Our method shows consistent motions of the armadillo, despite the
tessellation difference for different meshes. That indicates that our
method solves the linear systems well, regardless of the increase of
resolution. As reported in Table 1, all the armadillo examples are
simulated in real-time.

103 104 105 106

number of tetrahedra

100

101

102

103

104

105

r = 1.012

r = 0.365

memory (kilobytes)
time (milliseconds)

Fig. 7. Scalability of our method. We executed the armadillo example with
different resolutions ranging from 103 to 105 tetrahedra, measuring the
cost of memory (red graph) and time (blue graph) for each simulation. The
dashed line with slope r shows the slope after running a linear regression
on this log-log scaled plot.

To numerically validate the scalability of our method, we also
show the cost of memory and time of the armadillo examples in
Figure 7. The memory cost graph (red graph) plots the extra memory
overhead to store the interpolation matrices Us, the linear system
matrices UTAUs on different level grids and the coarsest level factors
from a dense Cholesky factorization. The time graph (blue graph)
shows the time to simulate an entire frame. We compute the slopes
of best-fit lines on this log-log scaled figure to see our scalability.
Our memory cost grows linearly (with a slope r = 1.012) with
the number of elements because of the linear growth of U and
UTAU matrices. Performance-wise, our method scales sub-linearly
(with only a slope r = 0.365) with respect to the mesh resolution,
fully taking the advantages of the multigrid hierarchy. The sub-
linear performance scale is also a result of our GPU implementation
where higher resolution simulations take more advantages from the
parallelization.

5.4 Flexibility
As a general linear solver, our multigrid method is flexible that can
be equipped with different descent methods. Figure 8 shows an
example of a hanging cloth simulation. Our method can be used to
replace the direct solver of Projective Dynamics [Bouaziz et al. 2014;
Liu et al. 2013]. The first row shows a GPU implementation of Pro-
jective Dynamics using a pre-factorized Cholesky solver. Due to the
parallelization unfriendly nature of forward/backward substitution,

ACM Trans. Graph., Vol. 38, No. 6, Article 162. Publication date: November 2019.

A Scalable Galerkin Multigrid Method for Real-time Simulation of Deformable Objects • 162:11

frame 15 frame 25 frame 37 frame 49

D
yn

am
ic

s
Pr

oj
ec

ti
ve

D
ir

ec
t S

ol
ve

r
D

yn
am

ic
s

Pr
oj

ec
ti

ve

O
ur

 S
ol

ve
r

M
et

ho
d

N
ew

to
n'

s

O
ur

 S
ol

ve
r

Fig. 8. Hanging cloth example with different numerical solvers. The first row
is simulated using Projective Dynamics solved using pre-factorized direct
solver; the second row is Projective Dynamics solved using our multigrid
solver; the third row is Newton’s method solved using our solver.

and bad memory consumption of the pre-computed factors, Projec-
tive Dynamics runs at 9.2 frames per second. Our method can be
used to accelerate Projective Dynamics, achieving 74.8 frames per
second which is an 8-times speed-up. However, under the Projective
Dynamics setting, our method also inherits its artifacts such as bad
wrinkles due to slow convergence for high-frequency components,
as we can see from the second row of Figure 8. Our method does
not depend on a specific choice of the system matrix, therefore, can
be applied with Newton’s method as well. The third row of Figure 8
shows the result of the cloth simulated using Newton’s method
solved by our multigrid technique. The frame rate dropped to 35.7
because of the run-time construction of the Hessian matrix and the
update of multi-level system matrices. Note that our multigrid for
Newton’s method still runs at real-time, while produces much better
wrinkle effects compared to Projective Dynamics.

5.5 Varying stiffness parameters
Increasing the stiffness of a system always make that system harder
to solve because of two reasons – it increases the condition number
of the linear systems and increase the nonlinearity of the entire
optimization problem. We tested our linear solver with different
stiffness parameters ranging from 5 × 102 to 2.56 × 105 as shown
in Figure 9. We measured our results by the normalized residual
which is simply | |Ax − b| | /| |Ax0 − b| | when solving Ax = b with
initial guess x0. All the experiments show similar residual reduction
factors, indicating that the accuracy of our method to solve linear
systems is hardly affected by varying stiffness parameters. The in-
crease of nonlinearity of the entire optimization problemwill require
most nonlinear optimization methods more iterations to converge, a
similar conclusion was reported by Liu and colleagues[2013]. With
our acceleration scheme for linear solvers, we are able to run more
nonlinear iterations to better support stiff materials within a certain
time budget.

102 103 104 105 106

stiffness

0

0.05

0.1

0.15

0.2

no
rm

al
iz

ed
 r

es
id

ua
l

Fig. 9. The normalized residual of our multigrid linear solver when solving
systems with varying stiffness parameters.

5.6 Comparisons
We compare our method with other parallel iterative solvers for
deformable body simulation [Fratarcangeli et al. 2018] in both 2-
dimensional and 3-dimensional scenarios as shown in Figure 10 and
in Figure 11 respectively. We tested three linear solvers – the Vi-
vace solver [Fratarcangeli et al. 2016], the Chebyshev semi-iterative
solver [Wang 2015] and our multigrid solver with the same linear
system from Projective Dynamics [Bouaziz et al. 2014] to make a
fair comparison. All three solvers are implemented in GPU. From
the same starting frame, we compare the convergence behavior of
all three methods with the following relative error:

д(x(k)) − д(x∗)
д(x(0)) − д(x∗)

(9)

where x∗ is the ground truth solution computed using Newton’s
method (iterated until convergence), x(0) is the initial guess and x(k)

is the result after k-th iterate of Projective Dynamics.
The Vivace solver was tested twice using different numbers of

symmetric Gauss-Seidel iterations (10 and 50). We always started
the Chebyshev semi-iterative solver with 1 Jacobi iteration, and

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
time (seconds)

10-4

10-3

10-2

10-1

100

re
la

ti
ve

 e
rr

or Vivace - 10 iterations
Vivace - 50 iterations
Chebyshev
Our Method

Fig. 10. Comparison on a cloth simulation with 40401 vertices and 240000
springs.

ACM Trans. Graph., Vol. 38, No. 6, Article 162. Publication date: November 2019.

162:12 • Zangyueyang Xian, Xin Tong, and Tiantian Liu

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
time (second)

10-2

10-1

100

re
la

ti
ve

 e
rr

or

Vivace - 10 iterations
Vivace - 50 iterations
Chebyshev
Our Method

Fig. 11. Comparison on an octopus simulation with 39223 vertices and
112145 tetrahedra.

we only enabled the Chebyshev acceleration after 10 iterations as
suggested by Wang[2015]. We fine-tuned the ρ parameter for the
Chebyshev method to make it fit best to specific examples.
In both of the cloth and octopus cases, our method outperforms

the other iterative solver competitors. Note that the first x-axis tick
(0.05 seconds) in Figure 10 and Figure 11 matters the most in real-
time applications. Failing to sufficiently reduce the error inside this
first tick might produce visually unacceptable artifacts, e.g. over-
stretch of the simulated object. Please refer to our accompanying
video to see the difference between three iterative solvers better.

We also compare our method with a Jacobi-preconditioned con-
jugate gradient (PCG) method which is a straight-forward solution
to implement in parallel. The results can be seen in Figure 12. PCG
runs reasonably well, despite the reduction and synchronization
overhead due to the frequent inner products in the algorithm. We
tested our method against different PCG settings with 10, 20 and
40 iterations per linear solve. Our method work best among all our
test scenarios.

6 LIMITATIONS AND FUTURE WORK
Compared to other stationary iterative methods, our multigrid ac-
celeration, of course, does not come as a free lunch. The speed-up
of our method greatly relies on our precomputation where the con-
struction of U matrices takes place. If the topology of the mesh is
changed, for instance when an object is torn apart, we need to re-
sample the multi-level grid vertices and compute the corresponding
interpolation matrices U.
Our method currently works only for homogeneous materials

because we uniformly sampled the multi-resolution vertices before
constructing our U matrices. It would be interesting to investigate
a representative sampling method for heterogeneous materials.
Our multigrid scheme can handle only soft constraints for now.

This is an inherited problem from the Galerkin projection. An intu-
itive explanation is that gradient (or force) can be efficiently passing
back and forth between different grid levels by projection, but the
that does not apply for hard constraints. We would like to inves-
tigate the possibility to support hard constraints for elastic body

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
time (second)

10-2

10-1

100

re
la

ti
ve

 e
rr

or

PCG - 10 iterations
PCG - 20 iterations
PCG - 40 iterations
Our Method

Fig. 12. Comparison with preconditioned conjugate gradient methods on
an octopus simulation with 39223 vertices and 112145 tetrahedra.

simulations [Goldenthal et al. 2007; Müller et al. 2007], or a more
general complaint-constraint-based scheme that treats both soft
and hard constraints in a unified framework [Macklin et al. 2016;
Tournier et al. 2015].

Another perfect direction to explore is collisions. In spite of
the possibility to support hard collision constraints like we just
mentioned, accelerating the collision detection, especially for self
collisions is an interesting research problem. Thanks to the piece-
wise constant weighting, our multigrid method naturally provides a
forest-like structure which could be helpful for fast multi-resolution
collision detections.

In all our experiments, we only use our multigrid as a standalone
linear solver. Our multigrid solver does not break the symmetry of
the system matrix because of our choice of symmetric smoothers
such as Jacobi or symmetric Gauss-Seidel. Therefore, it would be an
interesting extension to use our multigrid as a preconditioner for a
PCG solver when dealing with more challenging cases.

Multigrid methods are a lot of fun, we hope our multigrid scheme
would inspire more work on real-time large-scaled simulations.

ACKNOWLEDGMENTS
We thank Alec Jacobson, Yang Liu and Eftychios Sifakis for many
insightful discussions, Huamin Wang for providing his GPU simula-
tion framework, and the anonymous reviewers for their valuable
feedbacks.

REFERENCES
David Arthur and Sergei Vassilvitskii. 2007. k-means++: The advantages of careful

seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 1027–1035.

David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proc. of
ACM SIGGRAPH. 43–54.

Jernej Barbič and Doug L James. 2005. Real-time subspace integration for St. Venant-
Kirchhoff deformable models. In ACM Trans. Graph., Vol. 24. ACM, 982–990.

Jan Bender, Matthias Müller, and Miles Macklin. 2015. Position-Based Simulation
Methods in Computer Graphics.. In Eurographics (Tutorials).

Jan Bender, Matthias Müller, Miguel A Otaduy, Matthias Teschner, and Miles Macklin.
2014. A survey on position-based simulation methods in computer graphics. In
Comput. Graph. Forum, Vol. 33. Wiley Online Library, 228–251.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective dynamics: fusing constraint projections for fast simulation. ACM Trans.

ACM Trans. Graph., Vol. 38, No. 6, Article 162. Publication date: November 2019.

A Scalable Galerkin Multigrid Method for Real-time Simulation of Deformable Objects • 162:13

Graph. 33, 4 (2014), 154.
Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-reduced

projective dynamics. ACM Trans. Graph. 37, 4 (2018), 80.
Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal warping: Real-time simulation of

large rotational deformation and manipulation. IEEE Transactions on Visualization
and Computer Graphics 11, 1 (2005), 91–101.

Christian Dick, Joachim Georgii, and Rüdiger Westermann. 2011. A real-time multigrid
finite hexahedra method for elasticity simulation using CUDA. Simulation Modelling
Practice and Theory 19, 2 (2011), 801–816.

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A practical
gauss-seidel method for stable soft body dynamics. ACM Trans. Graph. 35, 6 (2016),
214.

Marco Fratarcangeli, Huamin Wang, and Yin Yang. 2018. Parallel iterative solvers for
real-time elastic deformations. In SIGGRAPH Asia 2018 Courses. ACM, 14.

Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson.
2019. Latent-space Dynamics for Reduced Deformable Simulation. Comput. Graph.
Forum (2019).

Theodore F Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M
Teran. 2015. Optimization integrator for large time steps. IEEE transactions on
visualization and computer graphics 21, 10 (2015), 1103–1115.

Joachim Georgii and Rüdiger Westermann. 2006. A multigrid framework for real-time
simulation of deformable bodies. Computers & Graphics 30, 3 (2006), 408–415.

Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun.
2007. Efficient simulation of inextensible cloth. ACM Trans. Graph. 26, 3 (2007), 49.

Alec Jacobson. 2015. How does Galerkin multigrid scale for irregular grids? http:
//www.alecjacobson.com/weblog/?p=4383

Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. 2012. Fast
automatic skinning transformations. ACM Trans. Graph. 31, 4 (2012), 77.

Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. 2011. Bounded biharmonic
weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78–1.

Inyong Jeon, Kwang-Jin Choi, Tae-Yong Kim, Bong-Ouk Choi, and Hyeong-Seok Ko.
2013. Constrainable multigrid for cloth. In Comput. Graph. Forum, Vol. 32. Wiley
Online Library, 31–39.

Liliya Kharevych, Weiwei Yang, Yiying Tong, Eva Kanso, Jerrold E Marsden, Peter
Schröder, and Matthieu Desbrun. 2006. Geometric, variational integrators for com-
puter animation. Proc. EG/ACM Symp. Computer Animation, 43–51.

Minchen Li, Ming Gao, Timothy Langlois, Chenfanfu Jiang, and Danny M Kaufman.
2019. Decomposed optimization time integrator for large-step elastodynamics. ACM
Trans. Graph. 38, 4 (2019), 70.

Haixiang Liu, Yuanming Hu, Bo Zhu, Wojciech Matusik, and Eftychios Sifakis. 2018.
Narrow-band topology optimization on a sparsely populated grid. In Proc. of ACM
SIGGRAPH Asia. ACM, 251.

Tiantian Liu, Adam W Bargteil, James F O’Brien, and Ladislav Kavan. 2013. Fast
simulation of mass-spring systems. ACM Trans. Graph. 32, 6 (2013), 214.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-newton methods for
real-time simulation of hyperelastic materials. ACM Trans. Graph. 36, 4 (2017), 116a.

Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Trans. Graph. 32,
4 (2013), 104.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-based
simulation of compliant constrained dynamics. In Proceedings of the 9th International
Conference on Motion in Games. ACM, 49–54.

Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. 2014. Unified
particle physics for real-time applications. ACM Trans. Graph. 33 (2014), 153:1–
153:12.

Nadia Magnenat-Thalmann, Richard Laperrire, and Daniel Thalmann. 1988. Joint-
dependent local deformations for hand animation and object grasping. In In Pro-
ceedings on Graphics interface’88. Citeseer.

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011.
Example-based elastic materials. In ACM Trans. Graph., Vol. 30. ACM, 72.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph
Teran, and Eftychios Sifakis. 2011. Efficient elasticity for character skinning with
contact and collisions. ACM Trans. Graph. 30, 4 (2011), 37.

Matthias Müller. 2008. Hierarchical Position Based Dynamics. InWorkshop in Virtual
Reality Interactions and Physical Simulation "VRIPHYS" (2008). The Eurographics
Association.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109–118.

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005.
Meshless deformations based on shape matching. In ACM Trans. Graph., Vol. 24.
471–478.

Matthew Overby, George E Brown, Jie Li, and Rahul Narain. 2017. ADMM ⊇ Projective
Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE
TVCG 23, 10 (2017), 2222–2234.

A.R. Rivers and D.L. James. 2007. FastLSM: fast lattice shape matching for robust
real-time deformation. ACM Trans. Graph. 26 (2007), 82:1–82:6.

Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids:
a practitioner’s guide to theory, discretization and model reduction. In ACM SIG-
GRAPH 2012 courses. ACM, 20.

Breannan Smith, Fernando De Goes, and Theodore Kim. 2019. Analytic Eigensystems
for Isotropic Distortion Energies. ACM Trans. Graph. 38, 1 (2019), 3.

Jos Stam. 2009. Nucleus: towards a Unified Dynamics Solver for Computer Graphics.
In IEEE Int. Conf. on CAD and Comput. Graph. 1–11.

Ari Stern and Mathieu Desbrun. 2006. Discrete geometric mechanics for variational
time integrators. In ACM SIGGRAPH Courses. ACM, 75–80.

Gilbert Strang and Kaija Aarikka. 1986. Introduction to applied mathematics. Vol. 16.
Wellesley-Cambridge Press Wellesley, MA.

Rasmus Tamstorf, Toby Jones, and Stephen F McCormick. 2015. Smoothed aggregation
multigrid for cloth simulation. ACM Trans. Graph. 34, 6 (2015), 245.

Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust
quasistatic finite elements and flesh simulation. In Proc. EG/ACM Symp. Computer
Animation. ACM, 181–190.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically de-
formable models. In Computer Graphics (Proceedings of SIGGRAPH), Vol. 21. 205–214.

Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and Francois Faure. 2015. Stable
constrained dynamics. ACM Trans. Graph. 34, 4 (2015), 132.

Christoph Von Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt.
2013. An efficient construction of reduced deformable objects. ACM Trans. Graph.
32, 6 (2013), 213.

Huamin Wang. 2015. A chebyshev semi-iterative approach for accelerating projective
and position-based dynamics. ACM Trans. Graph. 34 (2015), 246:1–246:9.

Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear subspace
design for real-time shape deformation. ACM Trans. Graph. 34, 4 (2015), 57.

Zhendong Wang, Longhua Wu, Marco Fratarcangeli, Min Tang, and Huamin Wang.
2018. Parallel Multigrid for Nonlinear Cloth Simulation. In Comput. Graph. Forum,
Vol. 37. Wiley Online Library, 131–141.

Jun Wu, Christian Dick, and Rudiger Westermann. 2016. A System for High-Resolution
Topology Optimization. IEEE TVCG 22, 3 (2016), 1195–1208.

Yufeng Zhu, Robert Bridson, and DannyM Kaufman. 2018. Blended cured quasi-newton
for distortion optimization. ACM Trans. Graph. 37, 4 (2018), 40.

Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient
multigrid method for the simulation of high-resolution elastic solids. ACM Trans.
Graph. 29, 2 (2010), 16.

APPENDIX
As reported in Table 4, we show the simulation parameters we used
to produce all our results in this paper and in the accompanying
video. Themass density represents area density for cloth and volume
density for other volumetric meshes. The material stiffness column
reports the stretch stiffness and bending stiffness for mass-spring
systems and Lamé’s second coefficient µ and first coefficient λ for
finite element models.

Table 4. Simulation parameters.

example mass material material attachment collision
density model stiffness stiffness stiffness

armadillo 1.0 corot 500/0 1 1
cloth 1.0 mass-spring 100/20 100 1
dragon 1.0 corot 250/0 1 -
octopus 1.0 corot 1000/0 1 -

ACM Trans. Graph., Vol. 38, No. 6, Article 162. Publication date: November 2019.

http://www.alecjacobson.com/weblog/?p=4383
http://www.alecjacobson.com/weblog/?p=4383

	Abstract
	1 Introduction
	2 Related Work
	2.1 Time integration schemes
	2.2 Optimization integrators
	2.3 Fast approximate solutions
	2.4 Reduced space methods
	2.5 Multigrid methods

	3 Background
	3.1 Implicit time integration and descent methods
	3.2 Multigrid methods

	4 Method
	4.1 Building the grid hierarchy
	4.2 Restriction and interpolation
	4.3 Fast update of multi-level system matrices
	4.4 Regularization for rank deficient cases
	4.5 Smoother and coarsest level solver
	4.6 Dynamics
	4.7 Pipeline summary

	5 Results
	5.1 Settings and performance
	5.2 Validations
	5.3 Scalability
	5.4 Flexibility
	5.5 Varying stiffness parameters
	5.6 Comparisons

	6 Limitations and Future Work
	Acknowledgments
	References

