Supplemental Material for "Fast and Robust Inversion-Free Shape Manipulation"

Tiantian Liu¹, Ming Gao², Lifeng Zhu^{1,4}, Eftychios Sifakis² and Ladislav Kavan^{1,3} ¹University of Pennsylvania, ²University of Wisconsin-Madison, ³University of Utah, ⁴Southeast University

1 Relation between semidefinite constraint and noninversion

In our paper we replace the noninversion constraint det(\mathbf{F}_i) > 0 with the semidefiniteness constraint $\mathbf{S}_i \succ 0$, where $\mathbf{S}_i = \text{sym}\{\hat{\mathbf{R}}_i\mathbf{F}_i\}$. (Note that sym $\{\mathbf{M}\} = \frac{1}{2}(\mathbf{M} + \mathbf{M}^T)$ denotes the symmetric part of matrix \mathbf{M} .)

In this section we show that the semidefinite constraint subsumes the positivity of the determinant, i.e. $\mathbf{S}_i \succ 0 \Rightarrow \det(\mathbf{F}_i) > 0$, and show bounds for the determinant that can be expressed using \mathbf{S}_i .

Lemma 1. Let $\Omega \in \mathbb{C}^{n \times n}$ be a skew-hermitian matrix, i.e. $\Omega^* = -\Omega$ where Ω^* denotes the conjugate transpose of Ω . Then all eigenvalues of Ω are imaginary (or zero).

Proof. Let (\mathbf{q}, λ) be an eigenvector-eigenvalue pair. Then

$$\mathbf{\Omega}\mathbf{q} = \lambda q \Rightarrow \mathbf{q}^*\mathbf{\Omega}\mathbf{q} = \lambda \mathbf{q}^*\mathbf{q} = \lambda ||\mathbf{q}||^2$$

Taking the conjugate transpose of the equation above, we have

$$(\mathbf{q}^* \mathbf{\Omega} \mathbf{q})^* = (\lambda ||\mathbf{q}||^2)^* \Rightarrow \mathbf{q}^* \mathbf{\Omega}^* \mathbf{q} = \lambda^* ||\mathbf{q}||^2 \Rightarrow -\mathbf{q}^* \mathbf{\Omega} \mathbf{q} = \lambda^* ||\mathbf{q}||^2$$

Adding the two equations $\lambda ||\mathbf{q}||^2 = \mathbf{q}^* \mathbf{\Omega} \mathbf{q}$ and $\lambda^* ||\mathbf{q}||^2 = -\mathbf{q}^* \mathbf{\Omega} \mathbf{q}$, we have $(\lambda + \lambda^*) ||\mathbf{q}||^2 = 0$.

Since the eigenvector **q** cannot be zero, we have $\lambda + \lambda^* = 0$, thus λ is an imaginary number (or zero).

Lemma 2. If $\Omega \in \mathbb{R}^{n \times n}$ is a skew-symmetric matrix, we can write $\Omega = U\Lambda U^* = U\Lambda U^{-1}$ where $U \in \mathbb{C}^{n \times n}$ is a unitary matrix and Λ is a diagonal matrix containing entries that

- $\left(i
 ight)$ are all imaginary (or zero), and
- (*ii*) come in conjugate pairs $-\alpha i, +\alpha i, -\beta i, +\beta i, -\gamma i, +\gamma i...$ (*If n is odd, it will also have an unpaired zero entry in* Λ .)

Proof. Because Ω is skew-symmetric, $\Omega^T \Omega = (-\Omega)(-\Omega^T) = \Omega \Omega^T$, i.e. Ω is normal. By the spectral theorem Ω is diagonalizable by a unitary matrix U (with $\mathbf{U}^* = \mathbf{U}^{-1}$), i.e.

$$oldsymbol{\Omega} = \mathbf{U}oldsymbol{\Lambda}\mathbf{U}^* = \mathbf{U}oldsymbol{\Lambda}\mathbf{U}^{-1}$$

 Ω and Λ are similar, thus the diagonal entries of Λ are the eigenvalues of Ω . By Lemma 1, they are all imaginary (or zero). Since $\Omega \in \mathbb{R}^{n \times n}$, all eigenvalues come in complex conjugate pairs.

Lemma 3. If $\mathbf{S} \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, and $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a skew-symmetric matrix, then $\det(\mathbf{S} + \mathbf{A}) \ge \det(\mathbf{S})$.

Proof. Since S is symmetric positive definite, it can be written in the form $S = NN^T$ where $N \in \mathbb{R}^{n \times n}$ (e.g. from Cholesky factorization). Subsequently, we can write:

$$det(\mathbf{S} + \mathbf{A}) = det(\mathbf{N}\mathbf{N}^{T} + \mathbf{A})$$

$$= det\left[\mathbf{N}(\mathbf{I} + \mathbf{N}^{-1}\mathbf{A}\mathbf{N}^{-T})\mathbf{N}^{T}\right]$$

$$= det(\mathbf{N}) det(\mathbf{I} + \mathbf{N}^{-1}\mathbf{A}\mathbf{N}^{-T}) det(\mathbf{N}^{T})$$

$$= det(\mathbf{N}\mathbf{N}^{T}) det(\mathbf{I} + \mathbf{N}^{-1}\mathbf{A}\mathbf{N}^{-T})$$

$$= det(\mathbf{S}) det(\mathbf{I} + \mathbf{\Omega})$$
(1)

where $\mathbf{\Omega} := \mathbf{N}^{-1} \mathbf{A} \mathbf{N}^{-T}$. $\mathbf{\Omega}$ is in fact skew symmetric :

$$\mathbf{\Omega}^{T} = (\mathbf{N}^{-T})^{T} \mathbf{A}^{T} (\mathbf{N}^{-1})^{T} = -\mathbf{N}^{-1} \mathbf{A} \mathbf{N}^{-T} = -\mathbf{\Omega}$$

Thus by Lemma 2 we can write

$$det(\mathbf{I} + \mathbf{\Omega}) = det(\mathbf{U}\mathbf{U}^{-1} + \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{-1})$$
$$= det(\mathbf{U}) det(\mathbf{I} + \mathbf{\Lambda}) det(\mathbf{U}^{-1})$$
$$= det(\mathbf{I} + \mathbf{\Lambda})$$

 $\mathbf{I} + \mathbf{\Lambda}$ is diagonal with paired imaginary entries $-\alpha i, +\alpha i, -\beta i, +\beta i, -\gamma i, +\gamma i...(\alpha, \beta, \gamma... \in \mathbb{R})$. Taking the product of those yields a greater or equal than 1 result since $(1 + \alpha i)(1 - \alpha i) = 1 + \alpha^2 \ge 1$, etc. Hence $\det(\mathbf{I} + \mathbf{\Omega}) \ge 1$. This result, combined with equation 1 yields $\det(\mathbf{S} + \mathbf{A}) \ge \det(\mathbf{S})$.

Theorem 4. Let $\hat{\mathbf{R}} \in \mathbb{R}^{n \times n}$ be a rotation matrix, i.e. $\hat{\mathbf{R}}$ is orthonormal and $\det(\hat{\mathbf{R}}) = 1$, and let $\mathbf{F} \in \mathbb{R}^{n \times n}$. Define $\mathbf{S} = \text{sym}\{\hat{\mathbf{R}}^T\mathbf{F}\}$. If $\mathbf{S} \succ 0$, then $\det(\mathbf{F}) \ge \det(\mathbf{S}) > 0$.

Proof. The inequality det(\mathbf{S}) > 0 is trivial if \mathbf{S} is positive definite. Since $\hat{\mathbf{R}}$ is a rotation matrix, we have det(\mathbf{F}) = det($\hat{\mathbf{R}}$) det(\mathbf{R})

Write $\mathbf{M} = \mathbf{S} + \mathbf{A}$, where $\mathbf{S} = (\mathbf{M} + \mathbf{M}^T)/2$ the symmetric part of \mathbf{M} as previously defined, while $\mathbf{A} = (\mathbf{M} - \mathbf{M}^T)/2$ is the skew-symmetric part of the same matrix. If $\mathbf{S} \succ 0$, then by Lemma 3 we have $\det(\mathbf{M}) = \det(\mathbf{S} + \mathbf{A}) \ge \det(\mathbf{S})$ which completes our proof. \Box

2 Proof of convexity for our penalty energy term

Finally, we provide a proof for the convexity of the penalty term $E_{penalty}(\mathbf{x}) = \sum_{i,j} p(\lambda_j(\mathbf{S}_i))$ used in our method.

Lemma 5. For $\forall p : \mathbb{R}^1 \to \mathbb{R}^1$ being a C^1 continuous and convex function, for $\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^1$,

$$(p'(\mathbf{x}_1) - p'(\mathbf{x}_2))(\mathbf{x}_1 - \mathbf{x}_2) \ge 0$$

Proof. The follows directly from the fact that the derivative $p'(\mathbf{x})$ is monotonically non-decreasing (due to the convexity of p).

$$\mathbf{A} : \mathbf{B} = (\mathbf{Q}^T \mathbf{A} \mathbf{Q}) : (\mathbf{Q}^T \mathbf{B} \mathbf{Q})$$

where $\mathbf{A} : \mathbf{B} = \sum_{i,j} a_{ij} b_{ij}$

•

Proof. Because \mathbf{Q} is orthogonal, $\mathbf{Q}\mathbf{Q}^T = \mathbf{Q}^T\mathbf{Q} = \mathbf{I}$. Thus

$$\mathbf{A} : \mathbf{B} = tr(\mathbf{A}\mathbf{B}^T)$$

= $tr(\mathbf{A}\mathbf{Q}\mathbf{Q}^T\mathbf{B}^T\mathbf{Q}\mathbf{Q}^T)$
= $tr(\mathbf{Q}^T\mathbf{A}\mathbf{Q} \cdot \mathbf{Q}^T\mathbf{B}^T\mathbf{Q})$
= $(\mathbf{Q}^T\mathbf{A}\mathbf{Q}) : (\mathbf{Q}^T\mathbf{B}\mathbf{Q})$

(cyclic permuation invariance of trace)

Lemma 7. For any square matrices A, B, if A is a diagonal matrix,

$$\mathbf{A}:\mathbf{B}=\mathbf{A}:diag\{\mathbf{B}\}$$

Proof. $\mathbf{A} : \mathbf{B} = \sum_{i=j} a_{ij} b_{ij} + \sum_{i \neq j} a_{ij} b_{ij}$. Because $a_{ij} = 0$ for $i \neq j$, We have

$$\mathbf{A}: \mathbf{B} = \sum_{i=j} a_{ij} b_{ij} = \mathbf{A}: diag\{\mathbf{B}\}$$

Theorem 8. $E_{penalty}(\mathbf{x}) = \sum_{i,j} p(\lambda_j(\mathbf{S}_i))$ is a convex function when p is a C^1 continuous and convex function, where: (1) i = 1, 2, 3...m, and j = 1, 2...d.

(2) *m* is the number of elements in the mesh, *d* is the dimension (d = 2 for 2D or d = 3 for 3D) of the problem. (3) $\mathbf{S}_i = \text{sym}\{\hat{\mathbf{R}}_i^T \mathbf{F}_i\}, \hat{\mathbf{R}}_i \text{ and } \mathbf{F}_i \text{ are the ex-rotation field and deformation gradient of the$ *i*-th element respectively.(4) $\lambda_i(\mathbf{S}_i)$ maps from matrix \mathbf{S}_i to its corresponding eigenvalues $\{\lambda_1, \lambda_2 \dots \lambda_d\}$.

Proof. An sufficient condition to prove $E_{penalty}(\mathbf{x})$ being a convex function is that $E_{penalty,i}(\mathbf{x}) = \sum_{j} p(\lambda_j(\mathbf{S}_i))$ being a convex function

for $\forall i$. To make the notation simpler, we will discard the subscript i, and write $\mathbf{S} = \text{sym}\{\hat{\mathbf{R}}^T\mathbf{F}\}, \mathbf{\Lambda} = \begin{bmatrix} \lambda_2(\mathbf{S}) \\ & \ddots \\ & \lambda_d(\mathbf{S}) \end{bmatrix}$. Notice that now we want to prove $E_{penalty,i} = \varphi(\mathbf{\Lambda}(\mathbf{S}(\mathbf{x}))) = \sum_j p(\lambda_j(\mathbf{S}))$ is a convex function over \mathbf{x} . Because \mathbf{S} is a linear mapping of **x**, it is sufficient to just prove $\varphi(\mathbf{\Lambda}(\mathbf{S}))$ is convex over S, so problem turns to be :

$$\delta \mathbf{S} : \frac{\partial^2 \varphi(\mathbf{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}^2} : \delta \mathbf{S} \ge 0$$

or

$$\delta_{\mathbf{S}}(\frac{\partial \varphi(\mathbf{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}}) : \delta \mathbf{S} \ge 0$$

Let's take a look at $\frac{\partial \varphi(\mathbf{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}}$ first :

$$\delta_{\mathbf{S}}\varphi(\mathbf{\Lambda}) = \nabla\varphi(\mathbf{\Lambda}) : \delta_{\mathbf{S}}(\mathbf{\Lambda}) \qquad \qquad \nabla\varphi(\mathbf{\Lambda}) = \begin{vmatrix} p'(\lambda_1) & & \\ & \dots & \\ & & p'(\lambda_d) \end{vmatrix}$$

Since Λ comes from an eigen decomposition from **S**, $\mathbf{Q}\Lambda\mathbf{Q}^T = \mathbf{S}$, we have

$$\begin{split} \delta_{\mathbf{S}} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T} + \mathbf{Q} \delta_{\mathbf{S}} \mathbf{\Lambda} \mathbf{Q}^{T} + \mathbf{Q} \mathbf{\Lambda} \delta_{\mathbf{S}} \mathbf{Q}^{T} &= \delta \mathbf{S} \\ Q^{T} (\delta_{\mathbf{S}} Q \mathbf{\Lambda} \mathbf{Q}^{T} + \mathbf{Q} \delta_{\mathbf{S}} \mathbf{\Lambda} \mathbf{Q}^{T} + \mathbf{Q} \mathbf{\Lambda} \delta_{\mathbf{S}} \mathbf{Q}^{T}) \mathbf{Q} &= \mathbf{Q}^{T} \delta \mathbf{S} \mathbf{Q} \\ (\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}) \mathbf{\Lambda} + \delta_{\mathbf{S}} \mathbf{\Lambda} + \mathbf{\Lambda} (\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q})^{T} &= \mathbf{Q}^{T} \delta \mathbf{S} \mathbf{Q} \end{split}$$

Notice that $\mathbf{Q}\mathbf{Q}^T = \mathbf{I}$,

$$\left(\mathbf{Q}^T \delta_{\mathbf{S}} \mathbf{Q}\right)^T + \mathbf{Q}^T \delta_{\mathbf{S}} \mathbf{Q} = 0$$

Thus, $\mathbf{Q}^T \delta_{\mathbf{S}} \mathbf{Q}$ is a skew-symmetric matrix, and $(\mathbf{Q}^T \delta_{\mathbf{S}} \mathbf{Q}) \mathbf{\Lambda} + \mathbf{\Lambda} (\mathbf{Q}^T \delta_{\mathbf{S}} \mathbf{Q})^T$ would be an off-diagonal matrix. Hence $\delta_{\mathbf{S}} \mathbf{\Lambda} = diag \{ \mathbf{Q}^T \delta_{\mathbf{S}} \mathbf{Q} \}$. Therefore,

$$\begin{split} \delta_{\mathbf{S}}(\varphi(\mathbf{\Lambda}(\mathbf{S}))) &= \nabla \varphi(\mathbf{\Lambda}) : \delta_{\mathbf{S}} \mathbf{\Lambda} \\ &= \nabla \varphi(\mathbf{\Lambda}) : diag\{\mathbf{Q}^T \delta \mathbf{S} \mathbf{Q}\} \\ &= \nabla \varphi(\mathbf{\Lambda}) : \mathbf{Q}^T \delta \mathbf{S} \mathbf{Q} \\ &= \mathbf{Q} \nabla \varphi(\mathbf{\Lambda}) \mathbf{Q}^T : \delta \mathbf{S} \end{split}$$
(Lemma 6)

That's to say : $\frac{\partial \varphi(\mathbf{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}} = \mathbf{Q} \nabla \varphi(\mathbf{\Lambda}) \mathbf{Q}^T$ by definition. Now let's prove $\delta_{\mathbf{S}}(\frac{\partial \varphi(\mathbf{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}}) : \delta \mathbf{S} \ge 0$:

$$\delta_{\mathbf{S}}(\frac{\partial \varphi(\mathbf{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}}) : \delta_{\mathbf{S}} = \delta_{\mathbf{S}}(\mathbf{Q}\nabla\varphi(\mathbf{\Lambda})\mathbf{Q}^{T}) : \delta_{\mathbf{S}}$$

$$= \delta_{\mathbf{S}}(\mathbf{Q}\nabla\varphi(\mathbf{\Lambda})\mathbf{Q}^{T}) : \delta_{\mathbf{S}}(\mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{T})$$

$$= (\mathbf{Q}^{T}\delta_{\mathbf{S}}(\mathbf{Q}\nabla\varphi(\mathbf{\Lambda})\mathbf{Q}^{T})\mathbf{Q}) : (\mathbf{Q}^{T}\delta_{\mathbf{S}}(\mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{T})\mathbf{Q})$$

$$= ((\mathbf{Q}^{T}\delta_{\mathbf{S}}\mathbf{Q})\nabla\varphi(\mathbf{\Lambda}) + \delta_{\mathbf{S}}(\nabla\varphi(\mathbf{\Lambda})) + \nabla\varphi(\mathbf{\Lambda})(\mathbf{Q}^{T}\delta_{\mathbf{S}}\mathbf{Q})^{T})$$

$$: ((\mathbf{Q}^{T}\delta_{\mathbf{S}}\mathbf{Q})\mathbf{\Lambda} + \delta_{\mathbf{S}}\mathbf{\Lambda} + \mathbf{\Lambda}(\mathbf{Q}^{T}\delta_{\mathbf{S}}\mathbf{Q})^{T})$$

$$(Lemma 6)$$

Notice that $\mathbf{Q}^T \delta_{\mathbf{S}} \mathbf{Q}$ is a skew-symmetric matrix, we can group the diagonal terms and off-diagonal terms separately, thus

$$\delta_{\mathbf{S}}(\underbrace{\frac{\partial \varphi(\mathbf{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}}): \delta_{\mathbf{S}} = \underbrace{((\mathbf{Q}^{T}\delta_{\mathbf{S}}\mathbf{Q})\nabla\varphi(\mathbf{\Lambda}) + \nabla\varphi(\mathbf{\Lambda})(\mathbf{Q}^{T}\delta_{\mathbf{S}}\mathbf{Q})^{T}): ((\mathbf{Q}^{T}\delta_{\mathbf{S}}\mathbf{Q})\mathbf{\Lambda} + \mathbf{\Lambda}(\mathbf{Q}^{T}\delta_{\mathbf{S}}\mathbf{Q})^{T})}_{(*)} + \underbrace{\delta_{\mathbf{S}}(\nabla\varphi(\mathbf{\Lambda})): \delta_{\mathbf{S}}\mathbf{\Lambda}}_{(**)}$$

If we write down the skew-symmetric matrix $\mathbf{Q}^T \delta_{\mathbf{S}} \mathbf{Q}$ explicitly as

$$\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q} = \begin{bmatrix} 0 & q_{12} & q_{1d} \\ -q_{12} & 0 & & \\ \cdot & & \cdot & \\ \cdot & & 0 & q_{d-1,d} \\ -q_{1d} & \cdot & \cdot & -q_{d-1,d} & 0 \end{bmatrix},$$

we can expand (*) to

$$(*) = \begin{bmatrix} 0 & ((p'(\lambda_2)) - p'(\lambda_1))q_{12} & ((p'(\lambda_d)) - p'(\lambda_1))q_{1d} \\ ((p'(\lambda_d)) - p'(\lambda_1))q_{12} & 0 & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ &$$

Since function p is C^1 continuous and convex, we have $(p'(\lambda_l) - p'(\lambda_k))(\lambda_l - \lambda_k) \ge 0$ by applying Lemma 5, thus $(*) \ge 0$. Similarly, we can expand (**) to

$$(**) = \sum_{k=1}^{d} p''(\lambda_k) (\delta_S(\lambda_k))^2$$

Once again because p is a convex function, $p''(\lambda_k) \ge 0$. Thus $(**) \ge 0$.

Therefore, we proved that $\delta_{\mathbf{S}}(\frac{\partial \varphi(\mathbf{A}(\mathbf{S}))}{\partial \mathbf{S}}) : \delta \mathbf{S} \ge 0$, and $E_{penalty}(\mathbf{x}) = \sum_{i,j} p(\lambda_j(\mathbf{S}_i))$ is a convex function.