Supplemental Material for "Fast and Robust Inversion-Free Shape Manipulation"

Tiantian Liu ${ }^{1}$, Ming Gao ${ }^{2}$, Lifeng Zhu ${ }^{1,4}$, Eftychios Sifakis ${ }^{2}$ and Ladislav Kavan ${ }^{1,3}$
${ }^{1}$ University of Pennsylvania, ${ }^{2}$ University of Wisconsin-Madison, ${ }^{3}$ University of Utah, ${ }^{4}$ Southeast University

1 Relation between semidefinite constraint and noninversion

In our paper we replace the noninversion constraint $\operatorname{det}\left(\mathbf{F}_{i}\right)>0$ with the semidefiniteness constraint $\mathbf{S}_{i} \succ 0$, where $\mathbf{S}_{i}=\operatorname{sym}\left\{\hat{\mathbf{R}}_{i} \mathbf{F}_{i}\right\}$. (Note that $\operatorname{sym}\{\mathbf{M}\}=\frac{1}{2}\left(\mathbf{M}+\mathbf{M}^{T}\right)$ denotes the symmetric part of matrix \mathbf{M}.)

In this section we show that the semidefinite constraint subsumes the positivity of the determinant, i.e. $\mathbf{S}_{i} \succ 0 \Rightarrow \operatorname{det}\left(\mathbf{F}_{i}\right)>0$, and show bounds for the determinant that can be expressed using \mathbf{S}_{i}.

Lemma 1. Let $\boldsymbol{\Omega} \in \mathbb{C}^{n \times n}$ be a skew-hermitian matrix, i.e. $\boldsymbol{\Omega}^{*}=-\boldsymbol{\Omega}$ where $\boldsymbol{\Omega}^{*}$ denotes the conjugate transpose of $\boldsymbol{\Omega}$.
Then all eigenvalues of $\boldsymbol{\Omega}$ are imaginary (or zero).

Proof. Let (\mathbf{q}, λ) be an eigenvector-eigenvalue pair. Then

$$
\boldsymbol{\Omega} \mathbf{q}=\lambda q \Rightarrow \mathbf{q}^{*} \boldsymbol{\Omega} \mathbf{q}=\lambda \mathbf{q}^{*} \mathbf{q}=\lambda\|\mathbf{q}\|^{2}
$$

Taking the conjugate transpose of the equation above, we have

$$
\left(\mathbf{q}^{*} \boldsymbol{\Omega} \mathbf{q}\right)^{*}=\left(\lambda\|\mathbf{q}\|^{2}\right)^{*} \Rightarrow \mathbf{q}^{*} \boldsymbol{\Omega}^{*} \mathbf{q}=\lambda^{*}\|\mathbf{q}\|^{2} \Rightarrow-\mathbf{q}^{*} \boldsymbol{\Omega} \mathbf{q}=\lambda^{*}\|\mathbf{q}\|^{2}
$$

Adding the two equations $\lambda\|\mathbf{q}\|^{2}=\mathbf{q}^{*} \boldsymbol{\Omega} \mathbf{q}$ and $\lambda^{*}\|\mathbf{q}\|^{2}=-\mathbf{q}^{*} \boldsymbol{\Omega} \mathbf{q}$, we have $\left(\lambda+\lambda^{*}\right)\|\mathbf{q}\|^{2}=0$.
Since the eigenvector \mathbf{q} cannot be zero, we have $\lambda+\lambda^{*}=0$, thus λ is an imaginary number (or zero).

Lemma 2. If $\boldsymbol{\Omega} \in \mathbb{R}^{n \times n}$ is a skew-symmetric matrix, we can write $\boldsymbol{\Omega}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{*}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{-1}$ where $\mathbf{U} \in \mathbb{C}^{n \times n}$ is a unitary matrix and $\boldsymbol{\Lambda}$ is a diagonal matrix containing entries that
(i) are all imaginary (or zero), and
(ii) come in conjugate pairs $-\alpha i,+\alpha i,-\beta i,+\beta i,-\gamma i,+\gamma i \ldots \quad(\alpha, \beta, \gamma \ldots \in \mathbb{R})$. (If n is odd, it will also have an unpaired zero entry in $\boldsymbol{\Lambda}$.)

Proof. Because $\boldsymbol{\Omega}$ is skew-symmetric, $\boldsymbol{\Omega}^{T} \boldsymbol{\Omega}=(-\boldsymbol{\Omega})\left(-\boldsymbol{\Omega}^{T}\right)=\boldsymbol{\Omega} \boldsymbol{\Omega}^{T}$, i.e. $\boldsymbol{\Omega}$ is normal. By the spectral theorem $\boldsymbol{\Omega}$ is diagonalizable by a unitary matrix \mathbf{U} (with $\mathbf{U}^{*}=\mathbf{U}^{-1}$), i.e.

$$
\boldsymbol{\Omega}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{*}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{-1}
$$

$\boldsymbol{\Omega}$ and $\boldsymbol{\Lambda}$ are similar, thus the diagonal entries of $\boldsymbol{\Lambda}$ are the eigenvalues of $\boldsymbol{\Omega}$. By Lemma 1, they are all imaginary (or zero).
Since $\Omega \in \mathbb{R}^{n \times n}$, all eigenvalues come in complex conjugate pairs.

Lemma 3. If $\mathbf{S} \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, and $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a skew-symmetric matrix, then $\operatorname{det}(\mathbf{S}+\mathbf{A}) \geq \operatorname{det}(\mathbf{S})$.
Proof. Since \mathbf{S} is symmetric positive definite, it can be written in the form $\mathbf{S}=\mathbf{N N}^{T}$ where $\mathbf{N} \in \mathbb{R}^{n \times n}$ (e.g. from Cholesky factorization). Subsequently, we can write:

$$
\begin{align*}
\operatorname{det}(\mathbf{S}+\mathbf{A}) & =\operatorname{det}\left(\mathbf{N} \mathbf{N}^{T}+\mathbf{A}\right) \\
& =\operatorname{det}\left[\mathbf{N}\left(\mathbf{I}+\mathbf{N}^{-1} \mathbf{A} \mathbf{N}^{-T}\right) \mathbf{N}^{T}\right] \\
& =\operatorname{det}(\mathbf{N}) \operatorname{det}\left(\mathbf{I}+\mathbf{N}^{-1} \mathbf{A} \mathbf{N}^{-T}\right) \operatorname{det}\left(\mathbf{N}^{T}\right) \\
& =\operatorname{det}\left(\mathbf{N} \mathbf{N}^{T}\right) \operatorname{det}\left(\mathbf{I}+\mathbf{N}^{-1} \mathbf{A} \mathbf{N}^{-T}\right) \\
& =\operatorname{det}(\mathbf{S}) \operatorname{det}(\mathbf{I}+\boldsymbol{\Omega}) \tag{1}
\end{align*}
$$

where $\boldsymbol{\Omega}:=\mathbf{N}^{-1} \mathbf{A} \mathbf{N}^{-T}$. $\boldsymbol{\Omega}$ is in fact skew symmetric :

$$
\boldsymbol{\Omega}^{T}=\left(\mathbf{N}^{-T}\right)^{T} \mathbf{A}^{T}\left(\mathbf{N}^{-1}\right)^{T}=-\mathbf{N}^{-1} \mathbf{A} \mathbf{N}^{-T}=-\boldsymbol{\Omega}
$$

$$
\begin{aligned}
\operatorname{det}(\mathbf{I}+\boldsymbol{\Omega}) & =\operatorname{det}\left(\mathbf{U} \mathbf{U}^{-1}+\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{-1}\right) \\
& =\operatorname{det}(\mathbf{U}) \operatorname{det}(\mathbf{I}+\boldsymbol{\Lambda}) \operatorname{det}\left(\mathbf{U}^{-1}\right) \\
& =\operatorname{det}(\mathbf{I}+\boldsymbol{\Lambda})
\end{aligned}
$$

$\mathbf{I}+\boldsymbol{\Lambda}$ is diagonal with paired imaginary entries $-\alpha i,+\alpha i,-\beta i,+\beta i,-\gamma i,+\gamma i \ldots(\alpha, \beta, \gamma \ldots \in \mathbb{R})$. Taking the product of those yields a greater or equal than 1 result since $(1+\alpha i)(1-\alpha i)=1+\alpha^{2} \geq 1$, etc. Hence $\operatorname{det}(\mathbf{I}+\boldsymbol{\Omega}) \geq 1$. This result, combined with equation 1 yields $\operatorname{det}(\mathbf{S}+\mathbf{A}) \geq \operatorname{det}(\mathbf{S})$.

Theorem 4. Let $\hat{\mathbf{R}} \in \mathbb{R}^{n \times n}$ be a rotation matrix, i.e. $\hat{\mathbf{R}}$ is orthonormal and $\operatorname{det}(\hat{\mathbf{R}})=1$, and let $\mathbf{F} \in \mathbb{R}^{n \times n}$.
Define $\mathbf{S}=\operatorname{sym}\left\{\hat{\mathbf{R}}^{T} \mathbf{F}\right\}$. If $\mathbf{S} \succ 0$, then $\operatorname{det}(\mathbf{F}) \geq \operatorname{det}(\mathbf{S})>0$.
Proof. The inequality $\operatorname{det}(\mathbf{S})>0$ is trivial if \mathbf{S} is positive definite. Since $\hat{\mathbf{R}}$ is a rotation matrix, we have $\operatorname{det}(\mathbf{F})=\operatorname{det}(\hat{\mathbf{R}}) \operatorname{det}(\mathbf{F})=$ $\operatorname{det}\left(\hat{\mathbf{R}}^{T} \mathbf{F}\right)$. Thus if we define $\mathbf{M}=\hat{\mathbf{R}}^{T} \mathbf{F}$, the theorem becomes equivalent to proving $\operatorname{det}(\mathbf{M}) \geq \operatorname{det}(\mathbf{S})$.

Write $\mathbf{M}=\mathbf{S}+\mathbf{A}$, where $\mathbf{S}=\left(\mathbf{M}+\mathbf{M}^{T}\right) / 2$ the symmetric part of \mathbf{M} as previously defined, while $\mathbf{A}=\left(\mathbf{M}-\mathbf{M}^{T}\right) / 2$ is the skewsymmetric part of the same matrix. If $\mathbf{S} \succ 0$, then by Lemma 3 we have $\operatorname{det}(\mathbf{M})=\operatorname{det}(\mathbf{S}+\mathbf{A}) \geq \operatorname{det}(\mathbf{S})$ which completes our proof.

2 Proof of convexity for our penalty energy term

Finally, we provide a proof for the convexity of the penalty term $E_{\text {penalty }}(\mathbf{x})=\sum_{i, j} p\left(\lambda_{j}\left(\mathbf{S}_{i}\right)\right)$ used in our method.
Lemma 5. For $\forall p: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}$ being a C^{1} continuous and convex function, for $\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in \mathbb{R}^{1}$,

$$
\left(p^{\prime}\left(\mathbf{x}_{1}\right)-p^{\prime}\left(\mathbf{x}_{2}\right)\right)\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \geq 0
$$

Proof. The follows directly from the fact that the derivative $p^{\prime}(\mathbf{x})$ is monotonically non-decreasing (due to the convexity of p).
Lemma 6. For any square matrices \mathbf{A}, \mathbf{B}, and orthogonal matrix \mathbf{Q} :

$$
\mathbf{A}: \mathbf{B}=\left(\mathbf{Q}^{T} \mathbf{A} \mathbf{Q}\right):\left(\mathbf{Q}^{T} \mathbf{B Q}\right)
$$

where $\mathbf{A}: \mathbf{B}=\sum_{i, j} a_{i j} b_{i j}$
Proof. Because \mathbf{Q} is orthogonal, $\mathbf{Q Q}^{T}=\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}$. Thus

$$
\begin{aligned}
\mathbf{A}: \mathbf{B} & =\operatorname{tr}\left(\mathbf{A} \mathbf{B}^{T}\right) \\
& =\operatorname{tr}\left(\mathbf{A} \mathbf{Q Q}^{T} \mathbf{B}^{T} \mathbf{Q} \mathbf{Q}^{T}\right) \\
& =\operatorname{tr}\left(\mathbf{Q}^{T} \mathbf{A} \mathbf{Q} \cdot \mathbf{Q}^{T} \mathbf{B}^{T} \mathbf{Q}\right) \quad \quad \text { (cyclic permuation invariance of trace) } \\
& =\left(\mathbf{Q}^{T} \mathbf{A} \mathbf{Q}\right):\left(\mathbf{Q}^{T} \mathbf{B Q}\right) \quad
\end{aligned}
$$

Lemma 7. For any square matrices \mathbf{A}, \mathbf{B}, if A is a diagonal matrix,

$$
\mathbf{A}: \mathbf{B}=\mathbf{A}: \operatorname{diag}\{\mathbf{B}\}
$$

Proof. A: B = $\sum_{i=j} a_{i j} b_{i j}+\sum_{i \neq j} a_{i j} b_{i j}$. Because $a_{i j}=0$ for $i \neq j$, We have

$$
\mathbf{A}: \mathbf{B}=\sum_{i=j} a_{i j} b_{i j}=\mathbf{A}: \operatorname{diag}\{\mathbf{B}\}
$$

Theorem 8. $E_{\text {penalty }}(\mathbf{x})=\sum_{i, j} p\left(\lambda_{j}\left(\mathbf{S}_{i}\right)\right)$ is a convex function when p is a C^{1} continuous and convex function, where: (1) $i=1,2,3 \ldots m$, and $j=1,2 \ldots d$.
(2) m is the number of elements in the mesh, d is the dimension $(d=2$ for $2 D$ or $d=3$ for $3 D$) of the problem.
(3) $\mathbf{S}_{i}=\operatorname{sym}\left\{\hat{\mathbf{R}}_{i}{ }^{T} \mathbf{F}_{i}\right\}, \hat{\mathbf{R}}_{i}$ and \mathbf{F}_{i} are the ex-rotation field and deformation gradient of the i-th element respectively.
(4) $\lambda_{j}\left(\mathbf{S}_{i}\right)$ maps from matrix \mathbf{S}_{i} to its corresponding eigenvalues $\left\{\lambda_{1}, \lambda_{2} \ldots \lambda_{d}\right\}$.

Proof. An sufficient condition to prove $E_{\text {penalty }}(\mathbf{x})$ being a convex function is that $E_{\text {penalty }, i}(\mathbf{x})=\sum_{j} p\left(\lambda_{j}\left(\mathbf{S}_{i}\right)\right)$ being a convex function for $\forall i$. To make the notation simpler, we will discard the subscript i, and write $\mathbf{S}=\operatorname{sym}\left\{\hat{\mathbf{R}}^{T} \mathbf{F}\right\}, \boldsymbol{\Lambda}=\left[\begin{array}{lll}\lambda_{1}(\mathbf{S}) & & \\ & \lambda_{2}(\mathbf{S}) & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & (\mathbf{S})\end{array}\right]$.
Notice that now we want to prove $E_{\text {penalty }, i}=\varphi(\boldsymbol{\Lambda}(\mathbf{S}(\mathbf{x})))=\sum_{j} p\left(\lambda_{j}(\mathbf{S})\right)$ is a convex function over \mathbf{x}. Because \mathbf{S} is a linear mapping of \mathbf{x}, it is sufficient to just prove $\varphi(\boldsymbol{\Lambda}(\mathbf{S}))$ is convex over S , so problem turns to be :

$$
\delta \mathbf{S}: \frac{\partial^{2} \varphi(\boldsymbol{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}^{2}}: \delta \mathbf{S} \geq 0
$$

or

$$
\delta_{\mathbf{S}}\left(\frac{\partial \varphi(\boldsymbol{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}}\right): \delta \mathbf{S} \geq 0
$$

Let's take a look at $\frac{\partial \varphi(\boldsymbol{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}}$ first :

$$
\delta_{\mathbf{S}} \varphi(\boldsymbol{\Lambda})=\nabla \varphi(\boldsymbol{\Lambda}): \delta_{\mathbf{S}}(\boldsymbol{\Lambda})
$$

$$
\nabla \varphi(\boldsymbol{\Lambda})=\left[\begin{array}{lll}
p^{\prime}\left(\lambda_{1}\right) & & \\
& \ldots & \\
& & p^{\prime}\left(\lambda_{d}\right)
\end{array}\right]
$$

Since $\boldsymbol{\Lambda}$ comes from an eigen decomposition from $\mathbf{S}, \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T}=\mathbf{S}$, we have

$$
\begin{aligned}
\delta_{\mathbf{S}} \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T}+\mathbf{Q} \delta_{\mathbf{S}} \boldsymbol{\Lambda} \mathbf{Q}^{T}+\mathbf{Q} \boldsymbol{\Lambda} \delta_{\mathbf{S}} \mathbf{Q}^{T} & =\delta \mathbf{S} \\
Q^{T}\left(\delta_{\mathbf{S}} Q \boldsymbol{\Lambda} \mathbf{Q}^{T}+\mathbf{Q} \delta_{\mathbf{S}} \boldsymbol{\Lambda} \mathbf{Q}^{T}+\mathbf{Q} \boldsymbol{\Lambda} \delta_{\mathbf{S}} \mathbf{Q}^{T}\right) \mathbf{Q} & =\mathbf{Q}^{T} \delta \mathbf{S Q} \\
\left(\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}\right) \boldsymbol{\Lambda}+\delta_{\mathbf{S}} \boldsymbol{\Lambda}+\boldsymbol{\Lambda}\left(\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}\right)^{T} & =\mathbf{Q}^{T} \delta \mathbf{S} \mathbf{Q}
\end{aligned}
$$

Notice that $\mathbf{Q Q}^{T}=\mathbf{I}$,

$$
\left(\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}\right)^{T}+\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}=0
$$

Thus, $\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}$ is a skew-symmetric matrix, and $\left(\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}\right) \boldsymbol{\Lambda}+\boldsymbol{\Lambda}\left(\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}\right)^{T}$ would be an off-diagonal matrix. Hence $\delta_{\mathbf{S}} \boldsymbol{\Lambda}=\operatorname{diag}\left\{\mathbf{Q}^{T} \delta \mathbf{S Q}\right\}$. Therefore,

$$
\begin{align*}
\delta_{\mathbf{S}}(\varphi(\boldsymbol{\Lambda}(\mathbf{S}))) & =\nabla \varphi(\boldsymbol{\Lambda}): \delta_{\mathbf{S}} \boldsymbol{\Lambda} \\
& =\nabla \varphi(\boldsymbol{\Lambda}): \operatorname{diag}\left\{\mathbf{Q}^{T} \delta \mathbf{S Q}\right\} \\
& =\nabla \varphi(\boldsymbol{\Lambda}): \mathbf{Q}^{T} \delta \mathbf{S Q} \tag{Lemma7}\\
& =\mathbf{Q} \nabla \varphi(\boldsymbol{\Lambda}) \mathbf{Q}^{T}: \delta \mathbf{S} \tag{Lemma6}
\end{align*}
$$

That's to say : $\frac{\partial \varphi(\boldsymbol{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}}=\mathbf{Q} \nabla \varphi(\boldsymbol{\Lambda}) \mathbf{Q}^{T}$ by definition. Now let's prove $\delta_{\mathbf{S}}\left(\frac{\partial \varphi(\boldsymbol{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}}\right): \delta \mathbf{S} \geq 0$:

$$
\begin{align*}
\delta_{\mathbf{S}}\left(\frac{\partial \varphi(\boldsymbol{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}}\right): \delta \mathbf{S}= & \delta_{\mathbf{S}}\left(\mathbf{Q} \nabla \varphi(\boldsymbol{\Lambda}) \mathbf{Q}^{T}\right): \delta \mathbf{S} \\
= & \delta_{\mathbf{S}}\left(\mathbf{Q} \nabla \varphi(\boldsymbol{\Lambda}) \mathbf{Q}^{T}\right): \delta_{\mathbf{S}}\left(\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T}\right) \\
= & \left(\mathbf{Q}^{T} \delta_{\mathbf{S}}\left(\mathbf{Q} \nabla \varphi(\boldsymbol{\Lambda}) \mathbf{Q}^{T}\right) \mathbf{Q}\right):\left(\mathbf{Q}^{T} \delta_{\mathbf{S}}\left(\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T}\right) \mathbf{Q}\right) \tag{Lemma6}\\
= & \left(\left(\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}\right) \nabla \varphi(\boldsymbol{\Lambda})+\delta_{\mathbf{S}}(\nabla \varphi(\boldsymbol{\Lambda}))+\nabla \varphi(\boldsymbol{\Lambda})\left(\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}\right)^{T}\right) \\
& \quad:\left(\left(\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}\right) \boldsymbol{\Lambda}+\delta_{\mathbf{S}} \boldsymbol{\Lambda}+\boldsymbol{\Lambda}\left(\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}\right)^{T}\right)
\end{align*}
$$

Notice that $\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}$ is a skew-symmetric matrix, we can group the diagonal terms and off-diagonal terms separately, thus

$$
\delta_{\mathbf{S}}\left(\frac{\partial \varphi(\boldsymbol{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}}\right): \delta \mathbf{S}=\underbrace{\left(\left(\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}\right) \nabla \varphi(\boldsymbol{\Lambda})+\nabla \varphi(\boldsymbol{\Lambda})\left(\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}\right)^{T}\right):\left(\left(\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}\right) \boldsymbol{\Lambda}+\boldsymbol{\Lambda}\left(\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}\right)^{T}\right)}_{(*)}+\underbrace{\delta_{\mathbf{S}}(\nabla \varphi(\boldsymbol{\Lambda})): \delta_{\mathbf{S}} \boldsymbol{\Lambda}}_{(* *)}
$$

If we write down the skew-symmetric matrix $\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}$ explicitly as

$$
\mathbf{Q}^{T} \delta_{\mathbf{S}} \mathbf{Q}=\left[\begin{array}{ccccc}
0 & q_{12} & & & q_{1 d} \\
-q_{12} & 0 & & & \cdot \\
\cdot & & \cdot & & \cdot \\
\cdot & & & 0 & q_{d-1, d} \\
-q_{1 d} & \cdot & \cdot & -q_{d-1, d} & 0
\end{array}\right]
$$

we can expand $(*)$ to

$$
\begin{aligned}
& (*)=\left[\begin{array}{cccc}
0 & \left(\left(p^{\prime}\left(\lambda_{2}\right)\right)-p^{\prime}\left(\lambda_{1}\right)\right) q_{12} & & \left(\left(p^{\prime}\left(\lambda_{d}\right)\right)-p^{\prime}\left(\lambda_{1}\right)\right) q_{1 d} \\
\left(\left(p^{\prime}\left(\lambda_{2}\right)\right)-p^{\prime}\left(\lambda_{1}\right)\right) q_{12} & 0 & \cdot & \cdot \\
\cdot & & \cdot & 0 \\
\cdot & \cdot & \left(\left(p^{\prime}\left(\lambda_{d}\right)\right)-p^{\prime}\left(\lambda_{d-1}\right)\right) q_{d-1, d} & \left(\left(p^{\prime}\left(\lambda_{d}\right)\right)-p^{\prime}\left(\lambda_{d-1}\right)\right) q_{d-1, d} \\
\left(\left(p^{\prime}\left(\lambda_{d}\right)\right)-p^{\prime}\left(\lambda_{1}\right)\right) q_{1 d} & \cdot & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =2 \sum_{k<l}\left(p^{\prime}\left(\lambda_{l}\right)-p^{\prime}\left(\lambda_{k}\right)\right)\left(\lambda_{l}-\lambda_{k}\right) q_{k l}^{2}
\end{aligned}
$$

Since function p is C^{1} continuous and convex, we have $\left(p^{\prime}\left(\lambda_{l}\right)-p^{\prime}\left(\lambda_{k}\right)\right)\left(\lambda_{l}-\lambda_{k}\right) \geq 0$ by applying Lemma 5 , thus $(*) \geq 0$.
Similarly, we can expand ($* *$) to

$$
(* *)=\sum_{k=1}^{d} p^{\prime \prime}\left(\lambda_{k}\right)\left(\delta_{S}\left(\lambda_{k}\right)\right)^{2}
$$

Once again because p is a convex function, $p^{\prime \prime}\left(\lambda_{k}\right) \geq 0$. Thus $(* *) \geq 0$.
Therefore, we proved that $\delta \mathbf{S}\left(\frac{\partial \varphi(\boldsymbol{\Lambda}(\mathbf{S}))}{\partial \mathbf{S}}\right): \delta \mathbf{S} \geq 0$, and $E_{\text {penalty }}(\mathbf{x})=\sum_{i, j} p\left(\lambda_{j}\left(\mathbf{S}_{i}\right)\right)$ is a convex function.

