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Soft Articulated Characters in Projective
Dynamics

Jing Li, Tiantian Liu, and Ladislav Kavan

Abstract—We propose a fast and robust solver to simulate continuum-based deformable models with constraints, in particular,
rigid-body and joint constraints useful for soft articulated characters. Our method embeds the degrees of freedom of both articulated
rigid bodies and deformable bodies in one unified constrained optimization problem, thus coupling the deformable and rigid bodies.
Inspired by Projective Dynamics which is a fast numerical solver to simulate deformable objects, we also propose a novel local/global
solver that takes full advantage of the pre-factorized system matrices to accelerate the solve of our constrained optimization problem.
Therefore, our method can efficiently simulate character models, with rigid-body parts (bones) being correctly coupled with deformable
parts (flesh). Our method is stable because backward Euler time integration is applied to both rigid and deformable degrees of
freedom. Our unified optimization problem is rigorously derived from constrained Newtonian mechanics. When simulating only
articulated rigid bodies as a special case, our method converges to the state-of-the-art rigid body simulators.

Index Terms—rigid body, deformable body, coupling, Projective Dynamics.
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1 INTRODUCTION

R EALISTIC animation of articulated characters plays an
important role in computer games, virtual reality and

other interactive applications. The animation of articulated
characters often models the body as a collection of rigid
bodies (“Ragdoll physics”) which can be computed quickly.
However, virtual characters are usually based on real-
world creatures, which often have a deformable external
part (flesh) that interacts with the environment (e.g., finger
grasping). This external part is coupled with a rigid internal
structure (skeleton) that provides support. For example,
believable animations of a human-like character, a snail,
or a mermaid require simulation of bones or similar rigid
structures, often further constrained with joints because two
adjacent bones (e.g. upper and lower arm) usually cannot
move arbitrarily. The mechanical interplay between rigid
and deformable bodies results in numerically challenging
simulation problems.

Projective Dynamics [1] is an implicit Euler solver used
in real-time deformable object simulation. It exploits a spe-
cial potential energy structure which enables an efficient lo-
cal/global solver, which often outperforms the classic New-
ton’s method, making Projective Dynamics a suitable option
for real-time simulation of deformable objects. However,
Projective Dynamics (PD) assumes continuum-based elastic
models. In theory, rigidity of the bones can be achieved
by increasing the stiffness of the rigid parts. In practice
however, this does not work very well, because with high
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stiffness ratios the convergence of PD deteriorates and more
computationally expensive Newton-type solvers are recom-
mended [2]. The problem is that the global step of PD can
only translate groups of vertices (e.g. four vertices in a tetra-
hedron), but not rotate them (the same problem is present
also in Position Based Dynamics). Therefore, constraints
with high stiffness effectively “lock” the orientation. In this
paper, we avoid this problem by linearizing the SE(3)
manifolds, enabling exact (i.e. infinitely stiff) rigid-body
constraints without locking. In Figure 1, we demonstrate an
example of the locking problem of Projective Dynamics and
demonstrate how our proposed approach avoids it.

In this work, which is an extended version of a paper
presented at the Symposium on Computer Animation 2019
[3], We propose a fast simulation framework for soft articu-
lated characters. Our method is derived from constrained
formulation of Newtonian dynamics by using backward
Euler time integration. In terms of the numerical solution,
we show that we can combine the principles of Projective
Dynamics and constrained dynamics into a unified opti-
mization problem.

Our contributions are as follows:

• We propose a unified method to simulate deformable
characters with articulated skeletons in Projective
Dynamics. Our method is fast and rigorously de-
rived from Newton’s laws via backward Euler time
integration.

• We show that the special structure of potential en-
ergy from Projective Dynamics retains its numerical
benefits when we reorganize the computations in a
certain way. In addition to the standard linear solve
required by Projective Dynamics, our global step in-
troduces several smaller solves with system matrices
whose sizes are independent of the mesh resolution
and are instead proportional to the number of bones
or joints.
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• The vertices corresponding to rigid bodies are repre-
sented by only the 6-DOFs used in classical rigid-
body dynamics, representing translation and rota-
tion in three-dimensional spaces. Our formulation
is monolithic, i.e., there is no separate treatment of
rigid and deformable degrees of freedom, transfer of
momenta etc., simplifying implementation.

• The rigidity constraints and joint constraints are
considered to be satisfied given that our method is
shown to converge empirically.

Our method and the method proposed in [3] share the
same problem formulation (Eq. 6). Both methods reuse the
prefactorization technique from Projective Dynamics. The
difference lies in how we solve the constrained optimiza-
tion problem (Eq. 6). Our method uses Lagrange multipliers
followed by Schur complement which naturally partitions
the deformable body from rigid body and joint constraints
while our previous method [3] isolates the joint constraints
in an additional optimization problem from the elastic en-
ergy.

Fig. 1: Imitating rigid bodies by higher stiffness in Projective
Dynamics results in locking (left), while our method (right)
produces the correct result. The ratio of stiffness of “flesh”
and “bones” is 1:500.

2 RELATED WORK

2.1 Deformable body simulation
Deformable bodies can be simulated by mass-spring sys-
tems [4], finite difference method [5], finite element method
(FEM) [6], [7], finite volume method (FVM) [8], boundary
element method (BEM) [9] etc. Position Based Dynamics
(PBD) [10] is one of the popular methods to simulate de-
formable bodies in real-time applications. PBD assumes in-
finitely stiff energy potentials and the material stiffness de-
pends on iteration count and time step, which is problematic
in a scene with objects of varied stiffness, e.g.: soft bodies
interacting with nearly rigid bodies [11]. PBD is solved in a
Gauss-Seidel fashion, which is stable and easy to implement,
but does not converge rapidly. Extended position-based
dynamics (XPBD) introduces a total Lagrange multiplier to
PBD, which converges to the actual solution of backward
Euler integration with physically correct stiffness. But sim-
ilar to PBD, XPBD suffers from slow convergence speed
of Gauss-Seidel iteration and low accuracy of only first
order approximation of backward Euler integrator. Those
shortcomings of PBD and XPBD are addressed by Projective
Dynamics (PD) [1] with rigor and higher accuracy from
continuum mechanics. Projective Dynamics was derived
as an extension of ShapeUp [12] to dynamics. ShapeUp
is an optimization system for geometry processing which
also supports rigid-body constraints, but these are only soft

constraints and dynamics is not considered. Increasing the
stiffness of the rigid-body constraints would result in similar
deterioration of convergence as in Projective Dynamics [2].

Projective Dynamics can be seen as a quasi-Newton
method [13] or an alternating direction method of multipli-
ers (ADMM) [14], and therefore supports more general ma-
terials. Fast GPU implementations of Projective Dynamics
are also possible. Those methods can be further accelerated
using Chebyshev semi-iterative approach [15], a colored
Gauss-Seidel method [16], or a hyper-reduce scheme [17].
Kugelstadt et al. [18] follow a similar strategy of Projective
Dynamics by using an operator splitting approach to speed
up the stretching resistance part. Moreover, it formulates the
resistance to volume change as compliant constraints and
introduces analytic polar decomposition(APD) to compute
the rotational part of the deformation gradient. Soler et
al. [19] simulate Cosserat rods with Projective Dynamics
by incorporating body orientation in standard PD solver.
Peng et al. [20] speed up the convergence rate of Projective
Dynamics for an accurate solution by applying Anderson
acceleration, a well-established technique for fixed point
iteration method.

2.2 Articulated rigid body simulation

Perfect rigid bodies do not exist in our real world. The con-
cept of the rigid body is merely an idealization to simplify
the computation. There is a large body of classical work in
computer graphics to simulate articulated rigid bodies [21],
[22], [23], as described in the detailed survey by J. Bender
et al. [24]. Armstrong and Green [25] incorporate dynamics
into the model of the human figure, given the forces and
torques applied to joints at key points in the animation.
Weinstein et al. [26] propose an iterative solution for han-
dling joint and large numbers of unpredictable contact and
collision events for rigid articulated bodies.

Witkin and Kass [27] propose a general tool to create
articulated character animation by using spacetime con-
straints. Zordan et al. [28] incorporate motion capture data
to make the articulated skeleton respond to unexpected
impact.

2.3 Coupling between rigid and deformable bodies

Coupling rigid and deformable bodies is an interesting topic
that has been explored by many authors [29], [30], [31], [32],
[33]. One common approach is to simulate each subsystem
with specialized technique and then bridge the two together
[34]. Specifically, Shinar et al. [34] designed a full two-
way coupling of rigid and deformable bodies. It consists
of 5 major steps to interleave the rigid and deformable
body simulation in addition to the simulation of both the
rigid and deformable degrees of freedom. ArtiSynth [35],
an open source package used for modeling and simulating
complex anatomical systems, is composed of both rigid
and deformable bodies. It uses FEM to simulate deformable
bodies and uses multibody techniques [36] to simulate rigid
bodies separately, and couple these two parts together using
attachment constraints. It is also common to simulate char-
acters via physically-based skinning [37], [38], [39], [40], [41],
however, with these methods the motion of the skeleton
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is specified kinematically, i.e., is not subject to physics-
based simulation. Galoppo et al. [42] combines articulated-
body dynamics and skin deformation, which is expressed in
pose space (rest configuration). It then applies displacement
corrections from deformation to skinning. However, this
method is not suitable for large global deformations, such
as highly flexible characters. Tournier et al. [2] propose an
offline method for high stiffness material and constraints.
Tournier et al. [2] also pointed out that Projective Dynamics
results in artificial damping or even locking if the relative
material stiffness is too high. Instead of using complete
geometric stiffness [43], Projective Dynamics only keeps the
constant term in the geometric stiffness. Kim and Pollard
[44] simulate skeleton-driven deformable body characters,
which uses mesh embedding to reduce the DOFs of the
deformable bodies. Verschoor et al. [45] define the shape
of the bone implicitly as a capsule. The distance between
the representative point on the bone and the interpolation
point (from 4 vertices in a tetrahedron) is minimized as
the energy term, whereas our method can simulate bones
of various shape such as skulls. Sifakis et al. [33] pro-
posed a framework to augment mesh-based simulation of
deformable body with point-based simulation technology.
This hybrid framework can be extended to simulate two-
way coupling of rigid and deformable bodies, but it is not
applicable to scenarios involving complex contact, stacking,
friction and articulation. O’Brien et al. [30] proposed a
modular approach to couple passive objects and the actively
controlled main character. It focuses on specific issues to
couple passive and active systems. This method is a force-
based method where a constraint force that prevents further
penetration, a stabilizing damping force that absorbs a por-
tion of the impact energy, and a restoring force corrects any
penetration error are all included. Recently, Wang et al. [46]
proposed an efficient and flexible approach for computing
rigid body dynamics where FEM nodes and their attach-
ment to rigid bodies can be incorporated as constraints.
Their method is a fully implicit two-way coupled method,
but not a monolithic method, thus stabilization is needed
to mitigate the unavoidable constraint drift. They designed
a preconditioned conjugate gradient solver, which is faster
than direct solvers at the problem sizes of around 1000
degrees of freedom.

2.4 Monolithic Methods

The philosophy of a monolithic simulation system of both
rigid and deformable bodies is explored by many authors.
For example, Barraff and Witkin [29] proposed a modular
approach to combine different simulation systems, each of
which is treated as a black box. The interaction between
systems is handled as constraint forces, which are approxi-
mated from velocities by making the system step forward.
The procedure of the method treats the two systems asym-
metrically. Therefore, it works best when there is significant
mass disparity between the two systems. In the method
of Jansson and Vergeest [31], the rigid body has both the
rigid body representation and the deformable body repre-
sentation as mass-spring system, which entails a number
of conversions between the deformable body representation
and the rigid body representation. One advantage of both

[31] and our method is DOF reduction in the simulation,
caused by the rigid body idealization. All the examples
shown in [31] consist of only a very small number of parti-
cles, whereas our method can simulate a significantly larger
system fast because our method is sped up by Projective
Dynamics. Lenoir and Fontenea [32] models both the de-
formable and rigid body as constraints: the deformable body
as inter constraints and the rigid body as inner constraints,
both of which are solved by Lagrange Multipliers. Both [32]
and our method treats rigid body dynamics as constraints.
The difference is that Lenoir and Fontenea [32] use Newton-
Euler formalism for the rigid constraints while our method
minimizes the inertia term and constrain the transformation
to SE(3). While these two approaches to realize the rigid
constraints are intrinsically the same, our method is more
convenient because there’s no need to compute the inertia
of the rigid body explicitly when the shape of the rigid
body is irregular. Both [32] and our method decomposes
the full system matrix into smaller blocks. But the way of
decomposing is completely different. Recently, Li et al. [3]
proposed a real-time simulation method to couple rigid and
deformable bodies in Projective Dynamics framework. This
method can be a good candidate for real-time application of
rigid-deformable body coupling because the computation
overhead is small. However, this method solves the joint
constraint in a separate step where the deformable body
is ignored temporarily, which could lead to disharmony be-
tween the rigid and deformable body in the next iteration. In
contrast, our method solves for unknown of the deformable
body and joint constraints together in one global solve,
which conciliates the deformable body, rigid body and the
joint constraints better.

3 BACKGROUND

3.1 Constrained Dynamics
Continuous equations of motion with constraints can be
written as [47]:

Ma(t) = −∇E(x(t)) +∇C(x(t))Tλ(t) + fext (1a)
C(x(t)) = 0 (1b)

where M is the mass matrix, x(t),v(t),a(t) ∈ R3n×1

denote the position, velocity and acceleration respectively.
−∇E(x(t)) and fext ∈ R3n×1 represent the internal and
external forces. And λ(t) ∈ Rnc×1 is a vector of Lagrange
multipliers which correspond to the system constraints
C = 0.

We integrate our system according to the backward Euler
integration rules:

xn+1 − xn = hvn+1

vn+1 − vn = han+1
(2)

where the subscript n+ 1, n and n− 1 denotes the future,
current and previous state respectively, and h is the timestep
size. By substituting Eq. 2 into Eq. 1a, we obtain a discretized
version root finding problem:

M

h2
(x− y) = −∇E(x) +∇C(x)Tλ (3)

where we drop the subscript of the only unknown variable
xn+1 and denote it as a shorthand x. y := 2xn − xn−1 +
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h2M−1fext is a constant vector that aggregates the known
values.

Together with C(x) = 0, Eq. 3 can be interpreted as
setting the gradient of the Lagrangian of the following
constrained optimization problem to zero:

min
x

1

2h2
‖x− y‖2M + E(x) (4a)

s.t. C(x) = 0 (4b)

3.2 Projective Dynamics
Projective Dynamics [1] treats a deformable body simulation
as an unconstrained optimization problem as described in
Eq. 4a and solves it using a local/global solver. For each
element i, the Projective Dynamics energy Ei(x,pi) is of the
form 1

2‖Gix−pi‖2F where Gi is a discrete finite differential
operator. Projective Dynamics re-formulates Eq. 4a into a
larger optimization problem with both x and p as the
system degrees of freedom.

min
x,p

1

2
xT

(
M

h2
+ L

)
x− xT

(
M

h2
y + Jp

)
+ b (5)

where L =
∑
wiG

T
i Gi and J =

∑
wiG

T
i Si (wi is a weight

scalar for each element and Si is a selector matrix) are two
state-independent matrices which can be pre-computed. b
is a constant vector irrelevant to the minimization problem
and can be therefore dropped. See [13] and [48] for more
details on L and J. Projective Dynamics iteratively solves
for x and p by alternating between fixing x and computing
p in the local step and fixing p and computing x in the
global step.

4 METHOD

4.1 Problem Formulation
We can formulate our articulated deformable body simula-
tion as a constrained optimization problem by instantiating
C(x) = 0 in Eq. 4b with rigid body and joint constraints,

min
x

1

2h2
‖x− y‖2M + E(x) (6a)

s.t. Tk ∈ SE(3) for k = 1. . . m (6b)
Tjq = Tkq if the j- and k-th bones share a joint q

(6c)

where Tk ∈ R3×4 is implicitly dependent on the vertex
positions x, representing the transformation matrix of bone
k; q ∈ R4×1 is the rest-pose position of the shared joint
connecting bone j and bone k, represented in homogeneous
coordinates; m is the number of bones. Eq. 6c means that a
joint transformed in the frame of bone k should be in the
same position after being transformed in the frame of bone
j when bone k and j share the joint q. There is no need
for explicit handling of rigid-deformable or rigid-rigid body
interaction because all physical interactions are implicitly
modeled as internal forces between individual elements
(tetrahedron). The rigid body dynamics are also taken into
account by having an inertia term in the objective for the
rigid body part. Currently, our method only supports ball
joints formulated by Eq. 6c. Our method treats linearized
rigid constraints as bilateral constraints and solves the over-
all problem as a constrained optimization problem while in

[3], the violation of rigid constraints is penalized by solving
a separate minimization problem.

Once the constrained optimization problem Eq. 6 is for-
mulated, one can use any off-the-shelf optimization method
to solve it. We tried a primal dual interior point method
using IPOPT [49] and got a pleasant result which can be
seen in Figure 9. However, using an interior point method
to solve our optimization problem could be excessive for
two reasons. First, the degrees of freedom corresponding to
the rigid vertices in Eq. 6a is redundant because every bone
needs only 6 DOFs to perform a rigid body transformation
instead of the DOFs of the actual number of vertices to
model the bone. Second, our joint constraints in Eq. 6c
are linear and the rigid body constraints in Eq. 6b can
be linearized using special treatments [50], which invite a
better numerical solution to solve the constrained problem.
These observations enable us to accelerate the solve of Eq. 6
using our modified local/global solver.

4.2 DOF Reduction
Let us first represent the position vector as x = [xf ;xb],
where xf ∈ R3nf×1 and xb ∈ R3nb×1 are the positions of the
flesh vertices and bone vertices respectively. The notation
nf and nb denotes the number of vertices of the flesh and
the bone. As we stated before, the bone vertices xb do not
need that many degrees of freedom, because no matter how
many vertices are used to model one bone, they all move
under the same rigid body transformation matrix which
only has 6 DOFs – 3 for translation and 3 for rotation. Note
that a linear function is not sufficient to map the positions
of the bone vertices to a rigid body transformation because
of the rotation DOFs. To remedy this, we design a two-step
DOF reduction scheme where the first step groups all bone
vertices to move in the same affine transformation space,
and the second step further reduce the DOFs of the affine
transformation to translation and linearized rotation.

In the first step, we simply want all vertices belong to
the same bone to move under one single transformation
matrix – not necessarily a rigid body transformation matrix
yet. The relationship between the bone vertices and their
corresponding transformation can be written as:

xbk,i = TkVbk,i (7)

where xbk,i ∈ R3×1 is the i-th vertex on bone k, Vbk,i is the
homogeneous coordinate of restpose position of i-th vertex
on bone k and Tk is the transformation matrix as defined in
Eq. 6b.

Note that the transformation matrix Tk has 12 DOFs
instead of 6 because it encodes some unwanted DOFs like
shearing or scaling, we can further reduce the transforma-
tion DOFs to 6 by representing Tk as a combination of
translation and linear rotation as our second step:

Tk = (I3 + ω∗
k)T

r
k +

[
03 `k

]
(8)

where Tr
k represent the closest rigid body transformation

matrix to Tk, initialized to an identity transformation matrix[
I3 03×1

]
at the rest-pose configuration. I3 and 03 are

3 × 3 identity and zero matrices respectively. The transla-
tion vector `k ∈ R3×1 and the linearized rotation vector
ωk ∈ R3×1 become the actual variables to determine Tk.
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The superscript ∗ turns the vector ωk into a skew-symmetric
cross-product matrix. This parameterization further restricts
the space of Tk from a 12-DOF affine space to a 6-DOF
tangent space of SE(3) at state Tr

k. The choice of Tr
k is

updated with the system. We will elaborate it at Section 4.3.
If we apply Eq. 8 to Eq. 7, we can rewrite xbk,i as a

function of ωk and `k:

xbk,i =
[
−[Tr

kVbk,i]
∗ I3

]︸ ︷︷ ︸
Ṽk,i

[
ωk

`k

]
+ [Tr

kVbk,i︸ ︷︷ ︸
V0

k,i

] (9)

We can keep stacking Eq. 9 to replace the original system
variable x in Eq. 6 as follows:

x =

[
xf

xb

]
=

[
Inf

0

0 Ṽ

]
︸ ︷︷ ︸

B

[
xf

s

]
︸ ︷︷ ︸

x̃

+V0 (10)

where Inf
is an nf × nf identity matrix, s is the stack of[

ωk

`k

]
for all rigid bodies, Ṽ ∈ R3nb×6m is a block diagonal

matrix whose diagonal entries are stacks of Ṽk,i in the same
bone, and V0 ∈ R3n×1 is the stack of V0

k,i. Both of Ṽ and V0

depend only on the rest-pose position of the bone vertices
and the rigid body transformation matrices Tr

k. The detailed
layout of Ṽ and V0 can be seen in the appendix. The original
system variable x ∈ R(3nf+3nb)×1 is now linearly controlled
by our reduced system variable x̃ ∈ R(3nf+6m)×1.

4.3 Local/global Solver
Even in a reduced space, the optimization problem in Eq. 6
is still nonlinear due to the rigid body constraints (Eq. 6b).
We resort to Projective Dynamics [1] as an accelerator to
solve this problem. The key idea of Projective Dynamics is
to isolate all the nonlinear components of an optimization
into mutually-independent small problems in its local step,
leaving only a linear problem to solve in the global step.
Inspired by this, we can first reformulate our objective
function Eq. 6a by plugging Eq. 10 into Eq. 5 in the reduced
space as:

min
x̃,p

1

2
x̃T BT

(
M

h2
+ L

)
B︸ ︷︷ ︸

Q

x̃

+ x̃T BT

((
M

h2
+ L

)
V0 −

(
M

h2
y + Jp

))
︸ ︷︷ ︸

c

(11)

where the nonlinearity in the elastic energy implicitly
grouped into the auxiliary variable p. Now all the nonlinear
components in our constrained problem are isolated in
the projection vector p and the rigid body transformation
matrices Tr

k, which naturally invites a local/global solver
to solve it.

Local step, Our first nonlinear component is con-
tained in p which is a stacked vector of projections from
the deformation gradient of each deformable element to a
wanted manifold such as SO(3) or SL(3). Another non-
linear component is the rigid body transformation matrix
Tr

k for each bone. Similar to Projective Dynamics, we run a
signed singular value decomposition (SSVD) on the current

deformation gradients of the flesh elements and on the first
three columns of the current transformation matrices Tk for
the bone vertices to evaluate p and Tr

k. Note that all those
projections are independent and involve only 3 × 3 SSVDs,
we can execute them efficiently in batch.

Global step, The objective of our global step is already
defined in Eq. 11, we further want to handle the constraints
in Eq. 6 together in this step. By substituting x in Eq. 6c
with Eq. 10, we get the linear constraints of the minimization
problem with reduced DOF as:

[
−[Tr

jq]
∗ I [Tr

kq]
∗ −I

]︸ ︷︷ ︸
A


ωj

`j
ωk

`k

 = −Tr
jq+Tr

kq︸ ︷︷ ︸
b

(12)

With the simplified notations defined in Eq. 11 and
Eq. 12, we can combine them into a linearly constrained
quadratic optimization problem as our global step:

min
x̃

1

2
x̃TQx̃+ cTx̃

s.t. Ax̃ = b
(13)

Note that we released the nonlinear constraint Eq. 6b in
our global step Eq. 13. This is because Eq. 6b is implicitly
handled in the local step where Tk is projected onto SE(3)
to get Tr

k. When a solution of Eq. 6 is found, our global step
Eq. 13 also reaches its optimal value since we restrict the
transformations of the bones to stay at the tangent spaces of
SE(3). In other words, our global step is not able to break
the rigid body constraints for the bone transformations from
a converged state of Eq. 6. We therefore solely rely on our
local step to handle the rigidity constraints in Eq. 6b.

4.4 Numerical Solution for Global Step

The special structure (quadratic objective and linear con-
straints) of Eq. 13 enables us to solve it using a closed
form solution. We can apply Lagrange multipliers to Eq. 13,
yielding

L(x̃, λ) =
1

2
x̃TQx̃ + cTx̃ + (Ax̃− b)

T
λ (14)

where the first-order optimality condition of the Lagrange
multipliers implies the following KKT system:[

Q AT

A 0

] [
x̃
λ

]
=

[
−c
b

]
(15)

Solving Eq. 15 would optimize our global step in one
shot. One can solve it using any iterative solver like min-
imum residual method or direct solver based on Cholesky
factorization. However, keeping in mind that the majority
of Q matrix is very likely to be constant, we are able
to even accelerate it using a pre-factorization strategy like
Projective Dynamics. To further investigate this possibility,
we divide Q into 4 blocks along the boundary between the
flesh vertices and bone vertices and rewrite Eq. 15 as: Qf QT

c

Qc Qb AT
b

Ab


︸ ︷︷ ︸

KKT matrix

 xf

s
λ

 =

 −cf−cs
b

 (16)
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Algorithm 1: local/global solver to solve Eq. 6

1 Initialize x
(1)
f , s(1) and T

(1)
k from the previous

frame.
2 for i = 1, . . . ,max iteration count do
3 Local Step: fix x̃,
4 compute p using [1];
5 compute Tr

k by projecting T
(i)
k , for k = 1 . . .m.

6 Global Step: fix p and Tr
k for k = 1 . . .m,

7 compute x(i+1)
f , s(i+1), λ(i+1) using Eq. 17.

8 Update: x̃(i+1) =

[
x
(i+1)
f

s(i+1)

]
.

9 Update:
T

(i+1)
k =

(
I3 + ω

∗(i+1)
k

)
Tr

k +
[
03 `

(i+1)
k

]
.

10 x = Bx̃.

where the KKT matrix is a (3nf + 6m + 3njp) ×
(3nf + 6m + 3njp) matrix that consists of Qf ∈ R3nf×3nf ,
Qc ∈ R6m×3nf , Qb ∈ R6m×6m and Ab ∈ R3njp×6m.
cf ∈ R3nf×1 is the top 3nf rows in c that corresponds to
the flesh vertices and cs ∈ R6m×1 is the bottom 6m rows. As
defined in Eq. 11, Qf = M/h2+L is a constant matrix from
Projective Dynamics, we can split the KKT matrix in Eq. 16
into constant and dynamics parts. The constant Cholesky
factorization of Qf can be reused when we solve Eq. 16
using Schur complement:

λ =
(
AbS

−1AT
b

)−1 (
−b+AbS

−1
(
−cs +QcQ

−1
f cf

))
(17a)

s = S−1
(
−cs +QcQ

−1
f cf −AT

b λ
)

(17b)

xf = Q−1
f

(
−cf −QT

c s
)

(17c)

where the upper case S is the Schur complement: S =
Qb−QcQ

−1
f QT

c . For a typical soft articulated character, the
number of joints and the number of rigid bones are much
smaller compared to the number of flesh vertices, hence the
dimension of the linear system to solve for λ and s is small.
Therefore we are able to compute and factorize S explicitly
in every global step. Thanks to the constant matrix Qf ,
we only need to factorize it once and can reuse its factor
throughout the entire simulation.

4.5 Summary
To summarize our method, we solve Eq. 6 by alternating
between the local and global steps. In the local step, we
compute p by projecting deformation gradient to a desired
manifold and compute Tr

k by projecting Tk to SE(3). In
the global step, we solve Eq. 13 with fixed p and Tr

k

using Eq. 17 to find the middle ground that accommodates
the nonlinearity. We summarize our algorithm in Alg. 1.
The superscript inside parenthesis indicates the iteration
number.

5 PIPELINE OVERVIEW

The pipeline of our method starts with constructing a con-
forming mesh of the rigid (bone) and deformable (flesh)

bodies. We use one .obj file to define the closed surface of
the exterior and another .obj file to define the closed surface
of the interior skeleton. Our framework takes the two .obj
files as input and outputs a .smesh file which tetgen [51]
can turn into conforming (Delaunay) tetrahedralized mesh
with a different regional attribute for each enclosed region.
From this .mesh file, we know exactly which vertices belong
to which bone region and which vertices belong to the flesh
region. In addition, we created a .joint file specifically in our
framework to keep track of the affiliation of all the rigid
bones and joints. By combining the .joint and .mesh file,
we have a complete model of the soft articulated character.
This process of constructing the model of soft articulated
character is illustrated in Figure 2. We show the model of
a human, a frog and a Thordyke in Figure 3, where the
deformable parts and the rigid parts (bone) are colored
pink and white respectively. The red dots represent the joint
positions. The deformable parts are simulated using a linear
co-rotational model in all the examples shown in Section 6.

Fig. 2: Schematic workflow of mesh construction

Fig. 3: Visualization of the interior of our models. The
deformable and rigid components are colored using pink
and white respectively. The joints are illustrated using red
dots.

To handle contact, we use the collision method proposed
in [52], which computes collision forces based on consistent
n-body penetration depth information. We add the collision
forces in fext in Eq. 1. We accelerate collision detection with
spatial hashing [52] as well.

6 RESULTS

Table 1 summarizes the settings and timings for the exam-
ples we used in the paper. All examples are executed on
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frame 20 frame 40 frame 70 frame 110 frame 20 frame 40 frame 70 frame 110 frame 20 frame 40 frame 70 frame 110

[Li et al. 2019] 10 iterations (431ms/frame) [Li et al. 2019] 38 iterations (1885ms/frame) Our method 10 iterations (1816ms/frame)

Fig. 4: The artifact of bones sticking outside of the body is sometimes observed in the method proposed in [3] when the
stiffness of the material is very low. More iterations in [3] does not always cure the artifact. With our method, this artifact
is never observed.

TABLE 1: Results on our example models

Example #Verts #Elems #Bones #Joints Time
Elastic Total PD [1] [3] IPOPT [49] Ours

cantilever 1010 1690 7661 2 1 70ms 73ms 8370ms 139ms
bead bracelet 0 1603 4638 12 12 40ms 62ms 3495ms 51ms
nunchuck 0 14073 66748 2 1 712ms 706ms 6074ms 791ms
aerial silk 11617 12683 45888 9 8 431ms 449ms 9681s 1816ms
frog 24615 29466 121630 18 13 1.140s 1.241s 30686s 5.75s
snail 14318 28840 105694 1 0 1.029s 1.027s 580s 1.795s
Thorndyke hanging 29623 37689 137312 59 9 1.319s 2.337s >10h 16.958s
Thorndyke rolling 29623 37689 137312 59 9 1.317s 1.672s >10h 17.347s

TABLE 2: Timing breakdown on our example models

Example Local Step Global Step Total
p Tr

k Q−1
f QT

c S−1 Q−1
f cf others

cantilever 9.264ms 0.1ms 4.091ms 0.245ms 0.225ms 0.009ms 13.964ms
bead bracelet 4.927ms 0.155ms − 0.027ms − − 5.109ms
nunchunck 76.955ms 2.164ms − 0.027ms − − 79.145ms
aerial silk 52.364ms 0.191ms 103.627ms 20.145ms 4.218ms 1.127ms 181.673ms
frog 111.627ms 0.591ms 343.882ms 107.791ms 7.873ms 3.382ms 575.145ms
snail 144.955ms 2.5ms 24.536ms 1.136ms 6.1ms 0.236ms 179.464ms
Thorndyke hanging 126.764ms 0.919ms 1175.3ms 370.609ms 10.073ms 12.145ms 1695.81ms
Thorndyke rolling 127.055ms 0.927ms 1213.8ms 370.727ms 10.127ms 12.136ms 1734.772ms

an Intel®CoreTM i7-8750H CPU. We experimented different
methods and recorded their timings as shown in the “Time”
columns in Table 1. PD time denotes the simulation time of
our base-line deformable body simulator Projective Dynam-
ics [1] without considering any rigid or joint constraints.
All other methods simulate both the deformable and rigid
bodies at the same time. [3] time is the timing for our
previous method [3], which is slightly slower compared
with PD. IPOPT time denotes the solving time for Eq. 6
using an off-the-shelf interior point solver [49]. At last,
the run time cost of our method is shown in the last
column. To make a fair comparison in performance, we
run 10 local/global iterations for all the examples simulated
using [1], [3] and our method. Our method has comparable
performance with Projective Dynamics in simple cases, like
our previous method [3]. In complicated cases with both
more deformable elements and more rigid/joint constraints,
our method runs an order of magnitude slower than PD,
to achieve more accurate and physically-correct results. We
show the accuracy of our method both qualitatively and
quantitatively later in this section.

To better assess the performance bottleneck of our

method, we list the timing breakdown for a single lo-
cal/global iteration, as shown in Table 2, where we note
down the timings to execute line 4 and 5 in Alg. 1 as the
local step cost and the timings to assemble the building
blocks to compute line 7 in Alg. 1 as the global step cost.
As we can see from Table 2, the main extra overhead of our
method compared with PD is to compute the matrix Q−1

f QT
c

in Eq. 17. Although Qf is a constant matrix in PD, we still do
not want to compute and store its inverse explicitly because
the inverse of Qf is dense. We instead pre-factorized Qf

using Cholesky factorization and treated the assembly of
Q−1

f QT
c as one linear solve with multiple right-hand-side

vectors. Since QT
c is a sparse matrix, we also used MUMPS

[53] to accelerate this linear solve. We apply the same trick
to solve for the sparse linear solve S−1 after assembling it.
We report the time of assembly and solving for S under
the column “S−1” in Table 2. Since the typical size of S is
much smaller compared to Qf , the solving for S is also less
expensive compared to computing Q−1

f QT
c . Our method

can simulate soft bodies with both interior and exterior rigid
parts, whereas the previous fast simulation methods usually
focus on only on rigid part or the soft part. Ragdoll physics
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alone cannot capture the secondary motion of soft bodies,
for example, the belly of the frog shown in Figure 5 where a
deformable frog with human-like skeleton inside is tumbled
inside a rotating box. Projective Dynamics, does not respect
the rigidity of an object, for example, the shell of a snail
shown in Figure 6. Of course we can forge the rigid parts in
Projective Dynamics by tuning their stiffness to extremely
high. However, this leads to a locking behavior as shown in
the middle of Figure 6 where the shell of the snail barely ro-
tates. Our method is able to simulate both the soft and rigid
components in a unified framework without penalizing the
rigid body motion, producing vivid secondary motions for
the belly of the frog and and the soft part of the snail, while
maintaining the rigid and joint constraints. Please refer to
our accompanying video for more details.

Fig. 5: A frog is tumbled in a rotating box. The legs are
bent in a way that the thigh and calf are almost straight
and they rotate around the knees, exhibiting similar effects
of ragdoll physics. At the same time, the secondary motion
(belly shake) from the deformable body is also present in
our result.

Fig. 6: A falling snail collides with a sphere. Our method
(right) keeps the shell rigid while Projective Dynamics with
uniform stiffness (left) collapses it and Projective Dynamics
with varying stiffness (middle) suffers from a locking arti-
fact.

Our previous method [3] is a good attempt towards
a fast and physically accurate soft and rigid body simu-
lator, but it has problems in some cases. In Figure 4, a
deformable acrobat with rigid skeleton inside is dragged
by a red ribbon. The leftmost sequences show the result
of our previous method [3], which didn’t take the elastic
energy into consideration when solving the joint constraint

optimization. In some challenging cases where the stiffness
of the deformable body is very small, artifacts such as
bones penetrating through the surface or even explosions
are sometimes observed. With the same number of local-
global iterations, our method, in contrast, does not have
this artifact as shown on the right of Figure 4. To make it
a fair comparison, we also tried to increase the number of
iterations of [3] to match the total time cost of our method,
as shown in the middle of Figure 4. This helps mitigating
this artifact, but can not remove it completely.

We also tested if our method will fail dramatically when
not converged completely using the same setting in Figure 4.
We do not observe any bone sticking out of the flesh, when
reducing the number of local/global iterations from 20 to
10, 5 and 1. However, we do observe the overall motion
of the acrobat is more damped when given only a few
local/global iterations compared to a converged solution.
To better view the differences of our method running with
different iterations, we show a top view of the same acrobat
in Figure 7. Lowering the local/global iteration count will
not cause any artifacts other than the artificial damping
inherited from Projective Dynamics. In fact, under those
low-iteration-count settings, we found our rigid and joint
constraints even easier to satisfy because of the more ar-
tificially damped motion. Therefore, we safely choose 10
local/global iterations to run all our examples, similarly to
Projective Dynamics. Also like Projective Dynamics, our
method inherits the artificial damping from the implicit
Euler time integration scheme. When simulated using larger
timesteps, our method will deliver more damped results as
shown in Figure 8.

Fig. 7: The top view of aierial silk when using different
local/global iteration counts. Frame 1, 100, 160, 205, 240 and
300 are chosen from the simulation and overlapped in the
picture. We can see that with only 1 local/global iteration,
the simulation is highly damped so that the swing circle is
much smaller since the acrobat stays closer to the rest-pose
when he loses his velocity fast.
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Fig. 8: The top view of aierial silk when using different
time steps (all using 20 local/global iterations). 0s, 2.64s,
5.28s, 7.92s, 10.56s and 13.20s indicate the time elapsed from
the starting frame. The swing circle gets smaller when the
timestep is larger.

In order to validate the accuracy of our method, we
tested a deformable cantilever with two rigid “bones” inside
it as shown in Figure 9. The ground truth solution was
obtained by IPOPT as shown on the left in Figure 9. The
middle figure shows the result of our method. We also tried
imitating the rigid bodies by setting the stiffness of the
white bones extremely large and solving the system using
stable constrained dynamics [2] which is able to solve poor-
conditioned system with compliant constraints. The result
is shown on the right in Figure 9. In this simple example,
the result of our method is visually indistinguishable from
the result of IPOPT, which can be considered as ground
truth. When measured quantitatively by the total energy,
our method produces a very similar but not identical energy
plot as IPOPT (Figure 11). Our method avoids injecting
energy artificially as [3]. However, the computation cost of
our method is only 139 ms to produce a frame compared
to 8370 ms using IPOPT. The result of stable constrained
dynamics differs from the ground truth solution because it
only uses a first order operator to approximate the nonlinear
solution of the compliant-constrained problems.

Our method empirically converges to the results pro-
duced by IPOPT, which we consider as ground truth, as
shown in Figure 10. The relative error is defined as:

||x(i) − x∗||
||x(0) − x∗||

(18)

where || · || is the Euclidean distance, x(i) is the solution
for ith iteration, x∗ is the solution from IPOPT. In the 3
experiments shown in Figure 10, we simulated the first 30
frames all using IPOPT and simulated the 31st frame using

Fig. 9: A cantilever with two “bones” inside. Our method (b)
gives visually indistinguishable result as IPOPT (a) while
stable constrained dynamics (c) exhibits different move-
ment.

Fig. 10: Our method is shown to converge empirically.
The horizontal axis is the number of local/global iterations
we run for our method and the log-scaled vertical axis is
the relative error our method produces compared to the
ground truth solution simulated using IPOPT. The blue
graph corresponding to the bottom left configure (a) simply
treats the entire cantilever as a uniform deformable bar and
the gray graph corresponding to the bottom right configure
(c) is simulating the two bones and one joint in configure (b)
without any deformable elements.

our method to produce the plots of relative error. Note
that when simulating a pure deformable body as shown
in the blue graph of Figure 10, our method degenerates
to vanilla Projective Dynamics. In most of our test cases
we experience similar convergence behavior with Projective
Dynamics which reduces the error fast at the beginning and
quickly slows down afterwards.

We tested our method on an interesting model called
Thorndyke, as shown in Figure 12. In this example, the
character is pinned at one point on the horn and swings
under gravity. The Thorndyke model is very complicated:
the horns, teeth, and nails are all rigid bodies in additional to
possessing an internal rigid skeleton. Our method exhibits
realistic simulation of both the internal and external rigid
bodies. The method proposed in [3] cannot handle it very
well and the simulation under the same configuration ex-
ploded in the third frame. The computation time in Table 1
of [3] is the average of only the first two frames.

Figure 13 shows that our method can exhibit richer
and more realistic animation than ragdoll physics in the
classic falling-down-stairs scene. The snout of Thorndyke is
squashed when it touches the stair. In the meantime, the
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Fig. 11: The total energy of the cantilever example in Fig-
ure 9, generated by different methods. The purple line
shows the total energy with the method of [3] using 10
iterations (70ms) and the green line shows the energy with
the method of [3] with 19 iterations (142ms).The blue line
shows the total energy of our method using 10 iterations
(139ms). The red line shows the total energy by using IPOPT.
Given more iterations to the method of [3], the energy
artifact is not fixed. The total energy is a sum of kinetic
energy, gravitational potential energy and elastic potential
energy.

Fig. 12: Our method can be used to simulate external rigid
parts like the horns, teeth and nails in Thorndyke.

horns, teeth, nails and the skeleton inside move as rigid
bodies, adding realism to the animation. Our method is able
to handle the collisions of the Thorndyke both on its soft
part and its exterior rigid components.

Under extreme cases where all vertices are set as rigid
vertices, our method degenerates to a rigid body simulator.
In Figure 14, a nunchuck consisting of two rigid blocks(2×
2×4 each) and a joint connecting them is pinned at one point
and is falling under gravity. The rightmost figure shows the
result by using IBDS [54] [55], which simulates multi-body
system of rigid bodies, particles, many different joint types
and collisions with dynamic and static friction. The timestep
is 0.1 second in all nunchuck experiments. The color of
the figures shows the heat map of difference between our
method and IBDS. Our method behaves differently with
IBDS because we use backward Euler as our time integrator
since Projective Dynamics, where our method is based on, is
derived from backward Euler, whereas IBDS uses an explicit
one. In order to remove the difference caused by the time
integrator, we sub-step both our method and IBDS by 1,
10 and 100, as shown in Figure 14. When we remove the
effects of different integrators by sub-stepping, our method
converges to the results obtained by the state-of-the-art rigid
body simulator perfectly.

Our method naturally handles closed loops which are
considered challenging cases that require special treatment

Fig. 13: Thorndyke rolls down the stairs.

Fig. 14: The 820th frame of a simulation by droping the
nunchuck while pinned at a point. The color is the heat
map of the difference between our method and IBDS. Our
method converges to rigid body dynamics if a sufficiently
small timestep is used.

[24]. Figure 15 shows a bead bracelet which consists of 12
beads as rigid bodies and 12 joint constraints connecting
the 12 beads in a loop. Our method simulates the bracelet
easily without transforming the loop into a tree and adding
additional forces to maintain the loop structure.

7 LIMITATION AND FUTURE WORK

Our method inherits the artifacts from Projective Dynamics
like the numerical damping due to insufficient convergence.
It is possible to accelerate our method using some advanced
methods designed for Projective Dynamics, such as [13] and
[20]. The ball joint constraints prevent bones from separat-
ing, but each bone can still rotate arbitrarily far, which is not
true for most biological joints. An interesting avenue for fu-
ture work would involve adding the support of joint limits.
Other types of joint constraints: prismatic, universal, cylin-
drical, screw or spline, which we don’t support now, can
provide the ability to animate more complex and interesting
characters, therefore, are of great research value in the future
as well. In all our examples, the characters are passive, i.e.,
not actuated. It would be possible to extend our method
with artist directed control to our physics-based system.
Spacetime constraints [27] offer control over the animation
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Fig. 15: A bead bracelet falling down under gravity while
one bead is held by attachment constraint.

and add physical realism with desired secondary motion
effects. State-of-the-art character control using spacetime
constraints supports only articulated bodies [27] or purely
deformable bodies [56]. In the future it would be interesting
to extend spacetime constraints to characters with soft flesh
and rigid skeletons.

8 CONCLUSIONS

We introduced a new monolithic method to simulate ar-
ticulated soft characters based on constrained dynamics.
Our method is accelerated using similar local/global strate-
gies in Projective Dynamics and is simple to implement;
in particular, no additional code is required to explicitly
handle the coupling between rigid and deformable bod-
ies. Our method is suitable for simulating characters with
deformable bodies, rigid bones and joints, which is often
required for realistic creatures. We believe our new ar-
ticulated/deformable simulating method will find use in
computer games or training simulators.
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