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Figure 1: We present a full-body reconstruction and animation system that can simulate physics-based volumetric effects such as self-collision
and inertial effects. Our method uses a set of 3D surface scans to adapt an anatomically-inspired volumetric model to the user.

Abstract

‘We present a method to create personalized anatomical models ready
for physics-based animation, using only a set of 3D surface scans.
We start by building a template anatomical model of an average
male which supports deformations due to both 1) subject-specific
variations: shapes and sizes of bones, muscles, and adipose tissues
and 2) skeletal poses. Next, we capture a set of 3D scans of an
actor in various poses. Our key contribution is formulating and
solving a large-scale optimization problem where we compute both
subject-specific and pose-dependent parameters such that our result-
ing anatomical model explains the captured 3D scans as closely as
possible. Compared to data-driven body modeling techniques that
focus only on the surface, our approach has the advantage of creating
physics-based models, which provide realistic 3D geometry of the
bones and muscles, and naturally supports effects such as inertia,
gravity, and collisions according to Newtonian dynamics.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;
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1 Introduction

The importance of human anatomy in visual arts was appreciated
already by Renaissance masters such as Leonardo da Vinci. More
recently, 3D anatomical models combined with physics-based sim-
ulation have been used to deliver unprecedented visual realism in
modern computer generated movies. Unfortunately, the design of
anatomically realistic characters is a labor intensive process even
for experienced digital artists using professional modeling and simu-
lation tools, such as those developed at Weta Digital and the ILM.
Therefore, high-fidelity anatomical models are typically only afford-
able in high-budget production, e.g., in movies such as Avatar or The
Lord of The Rings trilogy. Even though modeling of imaginary crea-
tures such as dragons inherently relies on creativity of digital artists,
when it comes to modeling humans, we believe we can substantially
improve upon the state of the art.

In this paper we present an automatic method to create an anatomical,
physics-based model of the body of a given human subject, e.g., an
actor. We achieve this by capturing a set of full-body 3D scans in
various poses and combining it with a template anatomical model.
This template model represents the anatomy of an average human
body, similar to traditional medical atlases. However, actual human
bodies exhibit large variations in height, muscularity, adiposity,
proportions of the limbs, etc. Our goal is to reshape and rescale
the template anatomical model in order to fit the target scans as
closely as possible, while accounting for shape changes due to both
subject-specific variations (bone lengths, muscularity, adiposity, ...)
as well as due to posing (changes of joint angles). The first type of
deformations (subject-specific) are caused by long-term biological
growth processes, while the pose-based deformations are induced
by short-term voluntary muscle contractions and consequent joint
motion. Our approach is summarized in Figure 2.

Data-driven modeling of animated human bodies has been a long
standing topic in computer graphics. Systems such as SCAPE
[Anguelov et al. 2005] or the more recent BlendSCAPE [Hirsh-
berg et al. 2012] construct an articulated human body model from a
set of input 3D scans. Similarly to artist-directed systems such as
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Figure 2: Workflow of our method: We take as input a set of 3D scans of the same actor in different poses. Our method aims at reconstructing
a complete volumetric, rigged, and physics-ready body model of the actor, by starting from an anatomical template model of an average male.
This consists of extracting its exterior and interior shapes, as well as skeleton bone lengths. Finally, our models are ready to be animated using

external skeletal and muscle activation data.

Pose Space Deformation [Lewis et al. 2000], these methods build
a data-driven model which predicts skin deformations based on the
skeletal pose (i.e., joint rotations). However, these methods focus ex-
clusively on the skin, i.e., outer boundary of the body. The skeleton
is modeled as connected line segments, disregarding the volumetric
nature of bones or muscles. While surface-based data-driven meth-
ods are effective at interpolating the input scans, they are oblivious
to the fact that biological soft tissues are elastic solids subject to
Newton’s laws of motion. A notable exception is DYNA [Pons-Moll
et al. 2015], which we will discuss in Related Work. To our knowl-
edge, our method is the first to reconstruct a fully physics-based
subject-specific anatomical model, naturally supporting effects such
as inertia, collisions, and gravity. We found that already volumetric
modeling of organs and their corresponding stiffness has interesting
visual implications; e.g., the rigidity of the rib cage is clearly visible
when animating upper trunk rotations, such as in Figure 8.

The problem of reconstructing anatomical models only from surface
3D scans is inherently ill-posed. Ground truth measurements of
organs could be obtained using MRI or CT scans; however, these
are expensive medical-grade devices designed to diagnose fine-scale
pathologies such as bone fractures or tumors. Aside from the high
costs, MRI or CT scanners are not suitable for computer animation
purposes because they offer only a very limited workspace, i.e., the
motion of the imaged human subject is highly constrained; further-
more, MRI machines require long scanning times and CT scanners
expose the person to ionizing radiation. Fortunately, for computer
graphics purposes we do not need high-fidelity medical imaging,
because a rough estimate of the scale and shape of the bones, mus-
cles, and subcutaneous adipose tissues is sufficient to produce high
quality animations. Our anatomical model is designed for full-body
animations and contains only the most visually significant muscles;
we do not model the delicate muscles of the face, hands, and feet, as
these body parts are often animated by specialized techniques. Our
anatomical template also does not contain the nervous or circulatory
systems or models of internal organs. However, our results can
readily be combined with other computer graphics techniques such
as displacement mapping in order to model, e.g., prominent veins or
fine scale wrinkles.

By measuring only the 3D geometry of the skin, it seems impos-
sible to determine what are the shapes and sizes of the underlying
bones, muscles, and adipose tissues. However, bones and mus-
cles do not grow arbitrarily in healthy human subjects (we do not
consider pathologies in this work), because the musculoskeletal ap-
paratus must be a functional mechanical system to allow locomotion.
To quantify which shapes are more likely than others, we employ

biomechanics-based growth models similar to Computational Body-
building [Saito et al. 2015]. While Computational Bodybuilding
presented methods for the forward simulation of growth of bones,
muscles, and adipose tissues, in this paper, we study the inverse
problem, i.e., we formulate an optimization to recover the fitting
parameters which best explain our input 3D scans. This problem
is quite challenging because we have to account for 1) the fact that
each 3D scan is in a different pose and 2) the organs do not grow in-
dependently, but influence each other due to internal action-reaction
forces (when one bone/muscle grows, it pushes the adjacent organs).

Contributions. To our knowledge, the problem of reconstruct-
ing physics-based anatomical models from input 3D scans has not
been tackled in previous work. Our main contribution is inverse
body modeling (Section 5), i.e., formulating and solving a large
optimization problem to find a subject-specific anatomical model
which explains the input 3D scans as closely as possible. Most
parts of our forward skinning model (Section 4) are derived from
previous work; however, we devise a new elastic potential (which
we call “symmetric as-rigid-as-possible” energy) in order to perform
the subsequent inverse modeling, since classical as-rigid-as-possible
models [Sorkine and Alexa 2007] do not work, as we discuss in
Section 4. We hope that our approach will help to lower the costs
of creating anatomical models of humans and make high-quality
physics-based animation accessible not only to well-known VFX
studios, but to a larger body of researchers and artists.

2 Related Work

Data-driven techniques. The most common approaches for mod-
eling complex anatomical variation is by leveraging large amounts
of data, usually in the form of 3D body scans or performance capture
data. Anguelov et al. [2005] learn a statistical model for body shape
variations as a function of body pose changes, which is applied on
top of a statistical model of neutral-pose body shapes. As such,
the same deformation model is used for all the people, while we
have the advantage of constructing person-specific internal compo-
nents which will behave differently in animations. This data-driven
approach was extended and applied to sparse motion-capture anima-
tion by Loper et al. [2014], in order to obtain better quality motion
reconstructions as compared to traditional skeleton-driven skinning
approaches. Zuffi et al. [2015] propose a part-based model where
each body component is a mesh associated to a statistical space,
and connected together by pairwise stitching energies. Recently,
Pons-Moll et al. [2015] introduced a data-driven technique that ad-
ditionally encodes shape changes due to skin and limb velocity and
acceleration, producing animations with compelling inertial effects



without the need for a physics simulation. While these techniques
are powerful interpolation tools, they are limited in their extrapola-
tion capabilities, fixable only by collecting more and more data. In
contrast, our method produces fully physics-based models, naturally
supporting not only inertial effects, but also effects due to gravity,
volumetric bones, and collisions.

For the particular task of breathing simulation, Tsoli et al. [2014]
introduce a data-driven approach in which pose and shape variation
is extracted from a set of registered 3D scans of people captured
while breathing in different scripted ways. These priors are then used
to generate varying types of respiration motions in novel characters.
In our method we do not explain shape variations due to breathing,
even though this would be an interesting direction for future work.

Anatomical models and physics. The motion of humans and in-
teractions between the various anatomical elements have long been
an important focus point for the biomechanics community. Open-
Sim [Delp et al. 2007] is an example of an open-source software
framework for biomechanical modeling, simulation and analysis, ex-
tensively used in biomechanics and motor control science. However,
OpenSIM does not support physics-based volumetric modeling of
muscles or adipose tissues. There are also other specialized med-
ically oriented frameworks, such as Sofa [Allard et al. 2007] or
ArtiSynth [Lloyd et al. 2012].

The survey of Lee et al. [2010] offers a thorough overview of how
the biomechanics and computer graphics communities model and
simulate muscles, with most work being focused on skeletal mus-
cles. Muscles are very complex structures that are not completely
understood by modern medicine, and, as a result, various approxi-
mations have been proposed for making muscle simulation tractable
for various medical or entertainment applications. Out of those, the
physics-based and data-driven approaches are the ones of most inter-
est for our work. Teran et al. [2003; 2005b; 2005a] introduced some
of the first comprehensive approaches for biomechanical human
body simulation in computer graphics. They construct a complete
volumetric human body and a compatible FEM simulation by using
solely data from the Visible Human Dataset.

Saito et al. [2015] propose a novel system for performing bodybuild-
ing or weight loss simulations on human models. They model the
muscles using synthetically computed muscle fibers. The growth of
the muscles is discretized into the anisotropic stretch of individual
muscle tetrahedra in the direction of the fibers, and computed effi-
ciently using the projective dynamics solver [Bouaziz et al. 2014].
The key difference from our method is that Saito et al. [2015] require
the bone/muscle/fat fitting parameters to be provided by the user.

Fan et al. [2014] propose a framework for simulating a dynamic
volumetric musculoskeletal system using an Eulerian-on-Lagrangian
discretization that can handle sliding elements in close contact, vol-
ume preservation and large deformations.

Anatomy Transfer [Dicko et al. 2013] is a method for transferring
and editing the internal structure of human bodies. It uses a template
human body model containing the skeleton and internal organs
and registers it to a single surface-mesh humanoid model. The
internal volume is adapted using harmonic deformation, driven by
the registration of the exterior surface. The amount of fat tissue is
controlled manually and the growth of the bones is constrained for
more plausible results. In a similar vein, [Zhu et al. 2015] adapts the
bone structure of upper and lower limbs given an RGB-D sequence
of moving limbs. Comparisons and other differences are discussed
in Section 7.

While a lot of research has gone into tackling the general problem of
human body motion, there has been work targeting specific aspects.
For example, Si et al. [2014] use an anatomical body model with

Figure 3: Components of our anatomically-inspired volumetric
template model. From left to right: skin and underlying generic soft
tissue, muscles and tendons, skeleton.
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Figure 4: Left: a close-up on the fibers on the right biceps muscle.
Right: Visualization of the embedded muscle fibers in the template
model.

muscle actuations in a complex fluid simulation in order to build
a control system to simulate different styles of swimming. Simi-
larly, Lee et al. [2006] focus on the biomechanical modeling and
neuromuscular control of the neck region.

Combining simulation and data. A technique for modeling non-
linear material deformations from a set of captured examples is
introduced by Bickel et al. [2009]. They used a scattered data inter-
polation technique in strain-space to simulate novel deformations
of objects composed of the observed materials. Similarly, Wang
et al. [2015] use off-the-shelf 3D sensors to track and model de-
formations of soft objects using physics-based probabilistic priors.
Chen et al. [2014] propose a performant approach to reconstruct the
zero-gravity rest pose shape of an object given multiple observations
under various external forces such as gravity.

3 Template Body Model

The template model defines the topology of the fitted actors, and acts
as a regularizer in the reconstruction process (see Fig. 3). It consists
of a set of n vertices X" € R3", connected in a tetrahedral mesh.
We build the template similar in spirit to Saito et al. [2015] by starting
from the commercially available Zygote anatomical model [Zygote
2016] with 111 muscles and 204 bones represented as meshes. The
skin, muscles, and bones are uniformly remeshed with the Instant
Meshes algorithm [Jakob et al. 2015] and then the surfaces are
tetrahedralized using the approach of Jacobson et al. [2013].

In our work, we differentiate between four main types of materials:
bones, tendons, muscles, and generic soft tissue. Each bone, tendon,
and muscle is embedded into the template tetrahedral mesh in a non-
conforming ways; i.e., each tetrahedron might contain one or all of the
materials in certain percentages. These percentages are computed
as a pre-processing stage using a Monte Carlo sampling approach
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Figure 5: The distribution of the material types inside the body.
From left to right: bones, generic soft tissue, muscle.
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Figure 6: Complex skeleton rig fitting on Faust dataset.

to estimate the amount of overlap of each muscle/tendon/bone with
each tetrahedron. For modeling the muscle atrophy and hypertrophy
during subject-specific body fitting, as well as muscle activations
during the animation stage (Section 6), the muscle fiber directions
are required (see Figure 4). We compute the fiber directions in
a similar way as Saito et al. [2015]. First, the tendon regions are
selected manually and associated with Dirichlet boundary conditions.
The non-tendon muscle boundaries are associated with Neumann
boundary conditions. Next, we solve a Poisson equation for a scalar
field using these boundary conditions. The resulting muscle fiber
directions are aligned with gradients of this scalar field.

Our template anatomical model corresponds to a lean male. To be
able to realistically model subjects with larger amounts of subcuta-
neous fat, we enhance our discretized volumetric template with a
“muscle envelope,” [Saito et al. 2015], i.e., a triangle mesh which
wraps all of the muscles and separates them from the subcutaneous
tissues. See Figure 5 for a visualization of the material distribution
in the template model.

In addition to modeling soft tissue, we also use a realistic skeletal
rig to parameterize the allowed motion of the bones. We built our
rig using kinematic models established in biomechanics [Wu et al.
2002]. The final rig is sufficiently expressive to allow even for
complex poses, as shown in Figure 6. Also, our rig describes not
only pose-dependent variations (via the joint rotation angles ), but
also subject-specific variations (via scaling parameters 7). The
scaling parameters 7 allow us to model different lengths and sizes
of the bones between individuals. We shall denote Rig(6;, ) as
the function that describes the motion of the bones as a function of
rig parameters. Specifically, the function Rig(é;, 7) returns posed
(skinned) vertex samples, illustrated in Figure 9, in the current pose

and scaling of the skeletal rig. These vertex samples will be used as
boundary conditions for minimizing the elastic energies of the soft
tissues, as described below.

4 Forward Skinning Model

Before diving into the inverse problem of body reconstruction, we
first describe our forward physics-based character model. Our model
is built by extending recent works, in particular Saito et al. [2015]
and Zhu et al. [2015]. Saito et al. simulated growth only in the
rest pose, without the use of a skeletal rig. Zhu et al. did create a
skeletal rig, but only for the extremities (the arm and the leg) and
the deformation model was based on direct skinning models.

In this paper, the body shape is implicitly defined as minimizer of a
deformation energy (corresponding to elasticity of soft biological
tissues) subject to Dirichlet boundary conditions (corresponding
to the bones which are fixed in a given position in space). This
process is known as quasi-statics [McAdams et al. 2011]: the bones
are kinematically controlled, e.g., by an animator, and for each
configuration of the bones, we compute a quasi-static equilibrium
where the forces due to bone contacts cancel forces due to internal
elasticity of the flesh (we use the term “flesh” as a shorthand for soft
biological tissues). These two interpretations are equivalent because
forces are negative derivatives of the elastic potential and therefore
must be zero in a minimizer.

In equations, we can define the quasi-static solution as function:

Skin(X*,8;,7) = arg min Egin(X™, X, 0;,7), (1)
X

where Egin (X, X, 0;, ) is equal to the following sum:
BoneFlesh(X, 0;, 7) + FEaer(X™, X) + Egrav(X) + Ecol(X). (2)

Here @ and 7 are joint orientations and bone scaling parameters
as discussed in Section 3. The vector X* describes positions of
mesh vertices in a reference rest pose, while X corresponds to the
deformed pose. The BoneFlesh function describes the connection
between the deformable mesh representing the flesh and the fixed
bones. Fqer(X*, X) is an elastic potential function which mea-
sures the amount of deformation between configurations X" and
X (both of which correspond to meshes with the same connectivity).
Eorv(X) is the gravity potential, i.e., a linear function which corre-
sponds to the familiar mgh product (mass, gravity constant, height).
The gravity potential allows us to simulate the interplay between
inertial and gravity forces in a physically realistic way, which is
important, e.g., in animating a fat man jumping. Finally, Fcoi(X) is
energy potential penalizing collisions, i.e., self-intersections of the
mesh. The necessary condition for X being in quasi-static equilib-
rium is Vx FEgxin = 0, i.e., sum of forces is zero. More details on
the above mentioned terms follow.

BoneFlesh. The BoneFlesh term models coupling between kine-
matically controlled bones and physically simulated flesh. Anatomi-
cally, this term can be related to connective tissues which hold the
musculoskeletal system together. Mathematically, we define:

2
BoneFlesh(X, 8;,T) = whone sborex — Rig(ai,ﬂ')H , 3

where S™™ is a binary selector matrix which extracts vertices corre-
sponding to the bone vertices kinematically controlled by the Rig
function, see Figure 9. These vertices are chosen to approximately
uniformly sample the surface of the bones and are explicitly present
in the tet-mesh associated with X (conforming embedding). In
theory, barycentric (non-conforming) embedding of bone vertices
should be sufficient; however, we observed occasional numerical



Figure 7: Complex pronation-supination motion is handled well by
our physics skinning.

Figure 8: Anatomically correct bones produce more realistic body
shapes e.g. during upper trunk rotation, where the rib cage retains
its shape.

stability issues when nearly co-linear or co-planar vertex samples
shared the same tetrahedron. Switching to conforming embedding
of bone-samples successfully prevents these issues. For that we
use TetGen with a switch to insert additional points [Si 2015]. The
weighting wwone controls the stiffness of the bone-flesh attachments
and is chosen sufficiently high to avoid excessive sliding of the flesh
(we note that some sliding is natural because biological connective
tissues are compliant). This model is sufficient even for large defor-
mations of the flesh such as pronation/supination (Figure 7) or upper
trunk rotation (Figure 8).

Rig. Our kinematic skeleton is modeled by the function Rig(@, ),
which takes joint angle orientations @ and bone scaling parameters 7
as input, and produces world-space coordinates of vertices sampling
the surfaces of the bones, as shown in Figure 9. The Rig function
performs two main tasks: 1) it geometrically deforms the bones
according to the scaling parameters, allowing us to model individu-
als with various lengths and shapes of the bones; 2) it implements
standard forward kinematics, i.e., hierarchical composition of ro-
tations of individual joints. We currently support only rotational
joints, but more complicated joint types (e.g. spline joints [Lee and
Terzopoulos 2008]) could be added to improve the accuracy of the
kinematic modeling.

When changing the lengths and shapes of the bones, it is important
not to distort the shape of the bone heads, because adjacent bone
heads are often in close sliding contact. We achieve this in a similar
way as Zhu et al. [2015]. Specifically, each bone is deformed using
linear blend skinning with bounded biharmonic weights [Jacobson
et al. 2011] with handles located in the center of each of the bone
heads, see Figure 10 for an example of a long bone elongation. The
handles of adjacent bones (i.e., forming a joint) are constrained to
be transformed by the same matrix which contains only translation

Figure 9: Sampled bone vertices corresponding to the selector
matrix 8" used in BoneFlesh function.

Figure 10: Example of the humerus bone elongation preserving
shape of bone heads using two deformation handles and precom-
puted bounded biharmonic weights.

and uniform scale. This guarantees that the structure of the joint
will be preserved. Bones with more complex shapes, such as
the ribcage and spine, are treated in a similar fashion. We allow
uniform scaling and elongation in the direction of the spinal cord to
preserve vertebrae connections. Similarly, we allow elongation of
the Scapula in the direction from the Sternum to the Humerus. For
every bone, we choose an elongation direction, precompute weight
for each sampled bone vertex and set bounds of the parameterization
based on anatomical limits. We found that this parameterization
was expressive enough to fit all tested scans well. Formally, we
can express this deformation using the BoneFit(m) function which
depends only on the fitting parameters 7 and produces the modified
rest pose bone vertex samples as a weighted linear combination of
scaling and elongation transformations T°":

BOHeFit(ﬂ') — 7,l_scalesbone)(src + 7t_elngvaBWr:[‘elngSbone)(src (4)

where Wpgpw are precomputed weights, mscqie 1S @ global scale
parameter and 7,4 represents rest of the fit parameters.

The next step is standard forward kinematics, i.e., hierarchical com-
position of transformations which correspond to the rotations of
individual joints (appearing as components of 8) and coordinate
transformations between the individual joints. This is analogous to
traditional forward kinematics models used in robotics [Murray et al.
1994], with the only difference that in our model, the lengths of the
bones can change according to the 7 parameters. If we denote the
resulting transformation from the rest pose to the world space as
FK (@, ), the entire rig function can be written as composition:

Rig(@, ) = FK(0, 7)BoneFit(r), ®)

where we assume the FK function returns a stack of homogeneous
matrices which are applied to each of the rescaled rest pose bone
samples returned by BoneFit.

Elastic potential Eqg.r. Elastic models of biological soft tissues
have received considerable attention both in the biomechanics [Weiss
et al. 1996; Fung 2013] as well as computer graphics communities
[Teran et al. 2005a; Teran et al. 2005b; Sifakis et al. 2005; Lee et al.
2009; Sifakis and Barbic 2012]. Neohookean hyper-elastic materials
have been found to function well in recent work [Bickel et al. 2012;



Skouras et al. 2014; Skouras et al. 2013]. Their advantage is realistic
modeling of large compression — when an element degenerates, the
Neohookean energy approaches infinity, as such configuration is not
physically realistic. However, for applications in computer graphics,
this behavior can be problematic, because as shown by Irving et
al. [2004], inverted tetrahedra may be necessary to capture large
deformations without resorting to remeshing. Increasing the mesh
resolution can avoid these problems, but the resolution required
to avoid all inversions would be prohibitively high; consider, e.g.,
the narrow space between cartilages of two bones connected by a
joint. One possible solution is the popular corotated elastic model,
which penalizes inverted elements by finite energies, i.e., allowing
elements to invert if they are forced to do so. In the core of corotated
elasticity is the following term: [|[DsD};' — R||%, where D/ and
D are edge direction matrices in the material (i.e., reference) space
and the deformed space (this notation is consistent with the tutorial
of Sifakis and Barbic [2012]). The matrix R € SO(3) is found by
projecting D sD;; onto the closest rotation.

Even though the classical corotated model is robust enough for use in
a production environment [McAdams et al. 2011], it has a significant
problem for our inverse problem, where we are optimizing also over
the rest pose; i.e., in our setting, the matrices Dy, are no longer
constant. Unfortunately, we found that the inversion of the D s
matrices poses serious numerical problems when rest pose tetrahedra
become close to degenerate; i.e., the D s matrices become close to
singular. This is problematic even if there is just a single degenerate
tetrahedron present in the entire optimization.

To avoid these numerical difficulties, we use the following energy:

Eu(X™, X)) = Z ki|Ds,i — RiD]W,iH%H (6)

where the index i goes over all tets and k; > 0 is stiffness of the
i-th tet. Note that Dy ; depends linearly on X3, Ds ; depends
linearly on X; and R; are rotation matrices minimizing the value
of Eaet(X*, X). This optimal R,; can be computed by forming the
signed SVD of Ds,iD}“ and replacing the matrix of singular val-
ues with an identity matrix. We call this energy “‘symmetric as-rigid-
as-possible” because | Ds,;; — RiDusi||lr = [|Ri Ds,i — Dl Fs
i.e., the rest pose and the deformed pose can be interchanged without
changing the value of the energy. Perhaps more importantly, there
is no need to invert the rest pose edge matrices D s ;, avoiding
the numerical difficulties of the classical corotated model. Another
advantage to the corotated model is that we do not need any volume
weighting term such as £|det(Das ;)| [Sifakis and Barbic 2012],
because our units do not cancel as in the DSD;{1 term; i.e., larger
tets automatically contribute more to the total energy than smaller
ones. See the appendix for more details.

The stiffness k; of each tetrahedron is computed as a weighted aver-
age of materials overlapping this tetrahedron. Note that even though
our tet-mesh conforms to bone sample vertices, it does not conform
to the full polygonal boundaries of the bones or muscles (which
would require prohibitively high-resolution tet-meshes). Similarly
to Lee et al. [2009], we define the stiffness of each tetrahedron
as (3, Vike)/ (30, Vi), where t indexes individual material types
(bones, tendons, muscles, generic soft tissues), k: > 0 represents
stiffness of each of the materials and V; is the volume of a tetra-
hedron occupied by each component (bone, tendon, muscle, and
generic soft tissues account for the remaining volume). We estimate
V; using Monte Carlo sampling (high accuracy is not necessary).
See Section 9 for more details.

Handling Collisions We treat collisions in a fashion similar to
McAdams et al. [2011]. We detect tet-tet collisions using a fast

bounding box sequence intersection algorithm [Zomorodian and
Edelsbrunner 2000]. For efficiency reasons, only selected regions
near the joints are considered for collision processing, as these are
the most common places where self-intersections occur. For exam-
ple, our system does not try to detect or resolve pose-induced colli-
sions such as hand touching the belly. The detected collisions are
handled by instantiating temporary anisotropic springs that project
the colliding vertices X out of the collision, to the surface of the
tetrahedral mesh:

Bar(X) = (nme " (X~ TI(X))) 9

where IT(X) is the projection of X onto the surface of the tetrahedral
mesh, encoded by the barycenters of the closest surface triangle,
and npy(x) is the normal at the projected surface triangle. This
anisotropy is helpful by allowing for sliding along the tangent plane
at the projected surface point [McAdams et al. 2011]. The Eco
energy potential is removed once the corresponding vertices are no
longer in contact.

Muscle growth. Our symmetric as-rigid-as-possible (ARAP) elas-
tic model can be extended to account for muscle growth [Saito et al.
2015]. We accomplish this by replacing Eq.¢ with the following
energy for the tetrahedra containing muscles:

Ernusete (X™, X, ) = Z |IDs,i — Rz‘BiS(Oti)B;rDM,i||%7 (8)

k3

which differs from the symmetric ARAP model by the term
B:S(;)B] accounting for muscle growth. Specifically, the or-
thonormal matrix B; is a change of coordinates which transforms
the z-axis to align with the fiber directions of the it" tetrahedron
(Figure 4). The matrix S(cv;) is a scaling matrix in the y and z-axes,
which allows for simulating muscle shape changes due to atrophy or
hypertrophy:

1 0 0

S(a;) =0 o 0 |. ©)
0 O

%3

5 Inverse Body Modeling

The input of our algorithm is a set of scans corresponding to vari-
ous poses of a given human subject (see Figure 2). First, the input
scans are registered against the skin surface mesh of our template
body model X'™!, i.e., deforming X" until it is in close corre-
spondence with the target scans. We use a non-rigid ICP procedure
[Rusinkiewicz and Levoy 2001], explained in more detail in Sec-
tion 5.1. We denote the resulting registered meshes as T, where
k = 1...numScans. The goal of inverse body modeling is to
recover the subject-specific body shape in the rest pose XP". Note
that this configuration is devoid of the effects of gravity (as if in
zero-gravity environment), because the gravity forces are added dur-
ing the quasi-static solve in the forward skinning process (Eq. 1).
In addition to determining X", we also have to solve for the bone
fitting parameters 7 and joint angles @}, where k indexes individual
poses, k = 1...numScans. The fitting parameters 7 are fixed
for a given human being, but the joint angles @ vary from pose
to pose. We need to find the values of X", 7, and 6}, such that
the forward skinning function Skin(XP** 8, ) produces shapes
as close as possible to T;. Because Skin is a complicated im-
plicitly defined non-linear function, we introduce auxiliary vari-
ables X" for the personalized and articulated (posed) body shapes.
When the inverse body modeling process is complete, we will have
Xt = Skin(XP***, 0, 7); however, this equality does not have to
hold in the intermediate steps of our optimization pipeline.
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Targeting term. We formalize the requirement of X" aligning
as closely as possible with T using the following “targeting term”,
which is the main objective of our optimization:

Elarg (X?cm) _ Z HNZ(SSkinXa]:ﬁ _
k

ST, (10)

where N, is a matrix of stacked scan normals, S is a binary se-
lector matrix of surface vertices, and S5 is a matrix of barycentric
coordinates that allows us to depart from the initial registration in
order to account for imperfections in the initial correspondences.
This is also why we use this “point-to-plane” objective which allows
for sliding of the skin vertices of X}" along their corresponding
tangent planes at T. The matrix S} "7 is initialized to the identity
(i.e., trusting the initial registration as described in Section 5.1) and
after each iteration of the optimization process, we search for new
correspondences. Specifically, for every skin vertex of X3, we
search for closest point of T, rejecting pairs further than 5 cm away
or with normals differing by more than 30 degrees [Rusinkiewicz

and Levoy 2001].

Reconstruction. Inverse body modeling can be formulated as the
following optimization problem:

min - Eug(XE) + Free(XP®, )

Xpers,xz}!cni’,,ryok

subject to ankm By (X, X5 05, ) = 0

an

where k = 1...numScans as before. The equality constraints re-
quire the posed shapes X" to be exactly in quasi-static equilibrium;
however, these constraints will be relaxed during our numerical

solution procedure described below.

But first, let us explain the regularization term Eie (X", ). Recon-
structing anatomical models from surface scans only is an ill-posed
problem, because we lack direct measurements from the inside of
the human body. Instead, we rely on anatomical priors to rule out
unlikely or even unnatural anatomies. We use

Ereg (X, ) = BoneFlesh(X"™, 00, m) + Eaer(X"™', XP)

+ Wmuscle Emuscle (lepl’ XperS) .

12)
Even though the sum of the BoneFlesh and Fqcr terms is reminiscent
of the forward skinning function, here these terms have a somewhat
different function: they serve to explain deformations between indi-
vidual human subjects, as opposed to poses of a single individual.
The 6 vector of joint angles corresponds to the rest pose and the
term BoneFlesh(XP*"® 8¢, ) requires the personalized rest pose
XP to align with the skeleton grown according to skeletal fitting
parameters . The Edef(Xth], XPe'*) term states that the deforma-
tion between X"™' and X" should be minimized. In other words,
the personalized mesh needs to stretch or shrink according to the
resized skeleton, but the shape should not depart too much from the
initial template.

Finally, the Emuscle(X““pl, XP®) term penalizes shape changes
which cannot be explained by muscle growth (the @ parameters
are free). Our approach tries to explain as much shape variation as
possible with biologically-inspired muscle growth. After that, fat
growth is applied in the subcutaneous layer to match the surface
shape of the target. The assumption is that muscle growth gives rise
to different shapes than fat growth. The parameter wWmusctle > 0
controls our confidence in this assumption and can be tuned by the
user or based on external measurements; e.g., it could be obtained
by the assessment of body fat percentage done by measuring the
skin fold thickness, or standard body mass index (BMI) approxima-
tions. This worked well for both the overweight and muscular man

(Fig. 12 third and first row). The effect of constrained muscle growth
is also clearly visible in Fig. 16. When the muscle modeling can
no longer explain target shape variations, the thin subcutaneous fat
layer of tetrahedra (called “muscle envelope”) grows to match the
target. Note that there is no gravitational potential acting on X**;
it only acts on the final articulated shapes X3". In other words,
our XP** shape corresponds to the rest-pose body in a zero gravity
environment [Chen et al. 2014].

Penalty method. Equation 11 represents a non-convex con-
strained optimization problem that can be written in a general form
as min f(x) subject to ¢(x) = 0, where f is the objective and ¢ a
vector function of constraints. We solve this optimization problem by
converting it into a sequence of unconstrained optimization problems
using the penalty method [Nocedal and Wright 2006]. Each uncon-
strained subproblem has the following form: min f(x) +||c(x)|?,
where ~ is the penalty weight. The « parameter is progressively
increased from 0 to Vmaz.

Each ~-subproblem is solved using Newton’s method with Hessian
modification (Algorithm 3.2 in [Nocedal and Wright 2006]). In par-
ticular, evaluating the exact Hessian matrix would be complicated
because it contains third derivative terms (note that the constraints
c already contain first derivatives of the E;, potential). Similarly
to Bickel et al. [2012], we drop these third derivative terms. The
approximate Hessian is further modified by adding scalar multiple
of the identity matrix to ensure positive definiteness. Having deter-
mined the descent direction, we calculate appropriate step size using
backtracking line search. We note that alternative numerical solution
procedures are possible, e.g., the Augmented Lagrangian Method,
however, we found that our quasi-Newton penalty method converges
rapidly in our experiments.

5.1 Registration

In this section we describe our method to obtain the initial reg-
istration between our template model X™' and the input scans
’i‘l, A Tnumscans, which are unstructured triangle meshes with
noise, holes, or other imperfections. We use a non-rigid ICP proce-
dure which deforms X" into T'1, .. ., Thumscans Such that each T
is well aligned with its corresponding scan T. We initialize the pro-
cess with approximately 15 landmark points, interactively selected
by the user in our GUIL. We use the tet-mesh associated with X"™' to
define a regularization energy for non-rigid ICP. Specifically, we use
our symmetric ARAP energy (Eq. 6) with uniform stiffness k; for
all tets. We do not even account for the rigidity of the bones, i.e., we
treat the entire template tet-mesh as a jellyfish. This approximation
is sufficient to establish good initial correspondences, which will be
refined in subsequent iterations of our optimization process.

5.2 Reconstruction pipeline

Since the inverse problem formulated in Equation 11 is highly non-
linear and the search space is large (e.g. up to 200k variables for
our experiments), it can be challenging to find a correct solution and
avoid numerical difficulties. Therefore, we split the optimization
into several sub-problems to obtain well-defined initial values that
approximate the solution. We found this step important to speedup
the convergence and avoid local minima due to the non-linearity of
some terms.

After registration, we start the reconstruction process by approxi-
mating skeleton parameters. We first optimize for global translation,
rotation and scaling of the skeleton for each scan. Next, we enable
the articulation parameters 0 to fit scan poses. After that, we opti-
mize the rest of the skeleton variables including 7. This concludes
the initial skeleton fitting and we move onto a next phase, which we
call “forward initialization”. In this phase we disable minimization



Figure 11: Our physics-based animation approach allows for ani-
mating pose-specific muscle shape changes due to muscle contrac-
tions. The upper images show the shape of the arm and muscles in a
flexing pose, and the lower images show the effect of contracting the
biceps muscle in the same pose.

over the X" variable in Eq. 11 to fit the scans without changing
the original rest pose. Finally, we optimize over all variables (in-
cluding XP**), taking advantage of good initial estimates computed
in the previous steps. Our symmetric ARAP energy is particularly
important to avoid numerical difficulties in evaluating the Eq4.r and
FEnuscle terms. More details about the symmetric ARAP behavior
can be found in the appendix.

6 Animation

The resulting personalized body model (XP** 7) is ready for
physics-based animation. As input, we provide a time-varying se-
quence of joint angles 8;, where the index j samples discrete time
intervals (corresponding, e.g., to a constant time step such as 1/30s).
The animated joint angles can come from various sources such as
keyframe animation or from retargeted motion capture data. This is
particularly easy to achieve by using a subset of the functionality of
our optimization framework.

But first, let us explain how to introduce dynamic effects, such as
flesh jiggling. In our physics-based framework, this can be naturally
achieved by switching from quasi-statics to full dynamics simulation.
Assuming the widely used Implicit Euler time integration, this is
as simple as adding an extra convex quadratic term to the energy
terms in the Fuin(X™¢, X, 0, ) function (Eq. 4). This “inertial”
term introduces history dependence, i.e., accounts for Newton’s
first law (which is ignored in quasi-statics). Specifically, let us
denote the animated body shape as Xj"™, where j again indexes
discrete time steps. We assume that X&™ and X4"™ are provided
as initial conditions (typically starting with zero velocities, i.e.,
XF'™ = Xi"™). The inertial term can be defined as:

1

Einert(X) - W

M2 (X = 25 X P a3)

where M is a diagonal mass matrix and h is the time step. This term
can be derived from the Implicit Euler integration rules, which can
be found e.g. in [Bouaziz et al. 2014].

In addition to the inertial term, we also add the collision avoid-
ance potential F discussed in Section 4. Gravity potential is also
accounted for as described already in Eq. 4.

The physics-based animation framework is quite versatile and in
addition to supporting the effects of inertia, collisions, and gravity,
we can also add muscle contraction forces. We assume that time-
varying muscle activation signals are provided by the user. These can
be e.g., keyframed, which is common in professional VFX animation
systems [WETA digital 2013], or calculated using inverse dynamics
models [Lee et al. 2009]. Let us denote the muscle activation signals
as B;, where j indexes discrete time steps as before. The muscle
contraction potential is similar to the muscle growth potential (Eq. 8),
however, instead of the rest-pose growth matrix S(«;) for each
tetrahedron ¢ (Eq. 9) we use the following matrix:

Bt 0 0
SBij)=11 0 /Bij 0 (14)
0 0 Bij

which accounts for the volume preserving nature of muscle con-

traction due to high water content in soft biological tissues [Weiss
et al. 1996]. Mathematically, this is modeled by the fact that the
determinant of matrix S(/3;,;) is one, resulting in the characteristic
bulging behavior of contracting muscles (see Figure 11 for an exam-
ple). Note that the muscle growth scaling matrix S(c;) (Eq. 9) does
not have determinant one because it accounts for growth, which is
of course not volume conserving.

7 Results

We performed our experiments on 3D surface scans with diverse
quality and resolution. Specifically, we tested our reconstruc-
tions on publicly available good quality 3D surface scans ob-
tained from the FAUST dataset [Bogo et al. 2014] and database
of Hasler et al. [2009], and on high quality commercially available
scans [TEN 24 2016]. Additionally, we also experimented with
low resolution scans captured using the Microsoft Kinect with the
Skanect Pro registration software.

Reconstruction accuracy. We have successfully reconstructed
targets with various body types and skeletal variations including a
muscular bodybuilder, subjects with apparent subcutaneous fat, as
well as a slim actor, see Figure 12. We used between 2 to 5 scans
for each subject depending on the quality of scans and diversity of
the poses. Although it would be possible to use only a single scan
in our method (similarly to Dicko et al. [2013]), this would mean
the underlying anatomical model would be less well determined.
In particular, we observed ambiguities when optimizing for subject
specific variations in bone lengths. For example, given one 3D
surface scan with the actor with straight limbs, it is very difficult to
accurately determine the locations of the joints. Jointly optimizing
over scans of multiple poses, e.g. adding a scan with bent limbs,
helps to eliminate this uncertainty, as the optimization algorithm
places the joint in the most appropriate location. In Figure 12 we
demonstrate the accuracy of our approach in terms of matching the
input 3D scans. Our results show that our physics-based model can
reproduce high quality body shapes with a close visual similarity to
the scans. Moreover, in Figure 17 we show how the fitting accuracy
improves when increasing the number of input scans.

Gravitational effects. Another advantage of using multiple scans
is reducing the ambiguity due to gravitational effects and self-
collisions of the skin. In Figure 13 we show the effect of taking
gravity into consideration during our inverse body modeling process.
‘We aim to reconstruct the rest pose in zero gravity, because gravity
will be added in the forward simulation process. Note that this is a
challenging problem in its own right [Chen et al. 2014].
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Figure 12: Registered 3D surface scans of our test subjects in two different poses (a, c) and corresponding reconstructions using our
anatomical physics-based model (b, d). Note that the shapes are quite similar. We also show our optimized rest pose X" (e) and a novel,

unseen pose synthesized using our forward skinning model (f).

Collisions. An example of collision handling during the forward
animation phase is shown in Figure 14. Equally important is colli-
sion handling during inverse body modeling. When the input 3D
scan contains body parts in contact, it means the measured shape
was influenced by action-reaction forces preventing the flesh from
inter-penetrating. Our E, term estimates these contact forces and
compensates for them during our inverse body modeling process.
This results in recovering more accurate rest poses, as shown in
Figure 15.

Comparison to Anatomy Transfer. Our approach has several
key advantages over Anatomy Transfer [Dicko et al. 2013] and its
extensions [Zhu et al. 2015]. First, our approach can take advantage
of multiple scans in different poses, which leads to high reconstruc-
tion accuracy, as discussed above and shown in Figure 17. Second,
Anatomy Transfer as well as its extensions [Zhu et al. 2015] use
only an approximate deformation model of biological soft tissues.
In our method, we use more realistic growth models for the bones
and muscles, which allows us to estimate the underlying anatomy
more accurately. Specifically, our material-aware deformation can
reconstruct subcutaneous fat and the shape of skeletal muscles more

realistically as shown in Figure 16. Furthermore, our reconstruction
process is fully automatic, without needing artistic input. This is
particularly important for animations including inertial effects and
secondary motions of soft tissues. Our method is also able to re-
construct the whole skeleton while preserving realistic bone shapes,
while Anatomy Transfer deforms skeleton using general affine trans-
formations which results in non-realistic bone deformations.

8 Limitations and Future Work

We focus on capturing the physics of large- and medium-scale
anatomical details, but we do not reconstruct faces, hands or toes.
We believe that these are research topics on their own which require
specialized approaches. However, such techniques already exist and
could be integrated in our body modeling framework.

In the visualizations of our experiments we noticed that the bones
sometimes protrude through the muscles, which is most visible in the
chest region. This is due to the soft non-conformal embedding of the
bones in the tetrahedral mesh of the body, as well as due to the multi-
material property of each body tetrahedron. These problems could be



Figure 13: Example of the effect of gravity on the rest pose re-
construction process. The figure on the left shows the result of the
reconstruction without taking gravity into account. In the middle,
gravity is taken into account and eliminated from the rest pose —
note that the belly “floating” as if the body was submersed in water.
This “zero gravity” rest pose matches the input scan (right) closely
because gravity is added during the forward simulation process.

Figure 14: Forward simulation collision handling example.

alleviated by increasing the resolution of the template model, which
may lead to the necessity of applying more memory-efficient and
performant optimization techniques. Another solution is to use hard
constraints for the BoneFlesh term which would require a different
class of algorithms to solve the constrained optimization problem,
e.g. Augmented Lagrangian Method as discussed in Section 5.

‘We do not consider muscle shape changes in the posed scans, as-
suming all the muscles are in a relaxed stage or that they are not
contracted significantly. While this holds true for most of the scans
we used in our experiment, one can think of poses and situations
in which correctly capturing the shape variation of muscles due to
contractions becomes important. For example, using a scan of the
bodybuilder flexing his arm muscles together with scans in which
he was relaxed created issues in our optimization. However, once
reconstructed, our anatomical models allow for simulating muscle
contraction in the forward animation stage. A venue of future re-
search would be to automatically extract muscle activations given
the pose of the subject, and to normalize the shape changes due to
contractions in the rest pose reconstruction problem.

The scans used in our experiments are static poses, in which the actor
was in equilibrium. The reconstruction problem becomes much more
complex when dynamics is added to the scans, e.g., by capturing
a continuous stream of point clouds from an actor’s performance.
Our algorithms do not make any male-specific assumptions (we
even removed the genitals) and should therefore work for females.
The only issue is preparation of a template female body which

Figure 15: Example of collision handling during inverse body mod-
eling. In this example, a single scan was used (shown in gray) in
which the actor was pressing his arms against his body. Notice that
the rest pose reconstruction on the left has the shape of the arm
imprinted on the chest; the reconstruction on the right does take the
collision forces into account and reaches a more realistic rest shape.

(a) constrained muscles

(b) uniform flesh deformation

Figure 16: Example of material-aware deformations during inverse
body modeling. In this comparison, muscle modeling is constrained
by muscle fiber directions (a). The yellow outline shows that muscles
are modeled more accurately and do not extend into regions that
clearly should be fat in contrast to simple uniform flesh deformation
used in (b). Material modeling is important for realistic simulation
of inertial effects of soft tissues, such as subcutaneous fat.

would require non-trivial 3D modeling efforts. Stylized or imaginary
characters such as Incredible Hulk are beyond the scope of this
project, because we cannot capture their ground truth scans and also,
their musculoskeletal structure may differ from human anatomy.
This opens opportunities for another research project with emphasis
on user interaction and anatomical modeling.

9 Conclusion

We presented an automatic method to reconstruct an anatomical,
physics-based model of the body of a given human subject. To our
knowledge, our system is the first to reconstruct personalized fully
volumetric physics-based human body models, which are suitable for
computer animation including effects such as inertia, collisions, and
gravity. We believe that our method will serve as a tool for reducing
the costs of person-specific modeling, and may inspire applications
even beyond the traditional realms of computer graphics.
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Figure 17: Evaluation experiment showing the effects of using different input scans (rows 1 and 2), as well as varying the number of input
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Appendix

Implementation details. The geometric search data structures
and algorithms used for the scan registration and collision detection
are based on CGAL [The CGAL Project 2016] and nanoflann [Muja
and Lowe 2014]. Numerical linear algebra is implemented using
Eigen [Guennebaud et al. 2010]. We benchmarked the performance
on a consumer laptop with a 3.1 GHz Intel Core i7 processor and
32GB of main memory. For a complete rest pose optimization using
4 scans, we needed a total number of about 15 Newton iterations
until convergence, with about 120s of computation time per iteration.
The template model used for the results presented in this paper has
12977 vertices, out of which 4901 are surface vertices, and 64164
tetrahedra. The skeleton used for rigging has 67 joints with a total
of 52 articulation and 38 sizing parameters. There are 111 muscles
in the template model.

In order to compute the contribution of each material to each body
tetrahedron, we use a Monte Carlo sampling approach. For each
muscle/tendon/bone tetrahedron 7,,, we generate one sample for
each mm? of the volume of T},. Specifically, we generate random
samples using a uniform distribution around the centroid of 77, until
the desired number of samples is reached. Using those locations,
we perform look-ups in the AABB tree of the body tetrahedrons 7}
and count the contributions of those samples inside the body. In

the forward simulation for the animation stage, we use a time step
h = 1/30s, and we build the mass matrix M assuming uniform
density of the material in the body, meaning that the per-vertex
mass is proportional to the sum of the volumes of the tetrahedra
in which that vertex is present. Our approach proved robust, and
excessive parameter tuning was not needed. The material parameters
we used to generate results are: kpone = 107, Kdefpone = 7 X 1074,
kdef,tendon =3 X 10_4, kdef,muscle =2x 10_4, kdef,soft,tissue = 10_4,
Emuscle = 1072, The penalty term ~ was increased from 0 t0 Yrmqz =
107 by factors of 10. In our experiments, increasing ~y further did
not produce any visible differences.

Discussion on the symmetric as-rigid-as-possible energy.
Our reconstruction algorithm is formulated as an inverse problem
which caused many issues in our experiments in terms of stability
and numerical accuracy. At first, we implemented the optimization
using standard ARAP elastic potential which proved robust for the
forward simulation. However, for the rest pose optimization, we
found that the inverse of the reference shape matrix Dps (which was
no longer constant) caused problems during the reconstruction in
cases of degeneration or inversion of tetrahedra. To illustrate the
problem, we formulate a simple 1D ARAP-like deformation energy:
2

ey

In (15)

Esies(lp,lr) =k ‘

where k is the stiffness, [r is a rest-pose and lp is a de-
formed element length. The goal of the inverse problem is to
find a rest-pose that minimizes the deformation energy lp =
argmin, , Esqer(lp,(r). The problem appears when the current
configuration has element [ p inverted (I = —1) but undeformed in
the rest-pose (Ir = 1). A correct solution is [r = —1; however, the
singularity of F,q4es at [r = 0 causes Newton’s method to iterate
towards wrong result as shown in Fig. 18. Fig. 19 shows comparison
of forward simulation of ARAP and symmetric ARAP energies.
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Figure 18: lllustration of the rest pose optimization instabilities of
the ARAP-like energy in 1D caused by inverted element. Newton's
method does not converge to the correct solution of the minimization

problem lr = —1 (red dot) when initialized as [lr = 1 (black dot).

cylinder twist 180 °©

cylinder twist 240 °© cylinder bending

(b) symmetric ARAP

Figure 19: We compare results of the forward simulation of a cylin-
der deformation using the ARAP (a) and our symmetric ARAP en-
ergy (b). Although the symmetric ARAP energy converges to slightly
less smooth results, it is much more robust in inverse body modeling.
Neither simulation includes a volume preservation term which could
be used to improve the visual quality of the results.



